工程力学 ›› 2019, Vol. 36 ›› Issue (10): 180-188.doi: 10.6052/j.issn.1000-4750.2018.10.0577

• 土木工程学科 • 上一篇    下一篇

轴压作用下CFRP加固圆钢管混凝土短柱的承载力分析

欧佳灵, 邵永波   

  1. 西南石油大学机电工程学院, 成都 610500
  • 收稿日期:2018-10-28 修回日期:2019-04-19 出版日期:2019-10-25 发布日期:2019-04-29
  • 通讯作者: 邵永波(1973-),男,山东烟台人,教授,博士,博导,主要从事海洋工程结构方面的研究(E-mail:ybshao@swpu.edu.cn). E-mail:ybshao@swpu.edu.cn
  • 作者简介:欧佳灵(1996-),男,四川广安人,硕士生,主要从事机械工程方面的研究工作(E-mail:jialingou@126.com).
  • 基金资助:
    四川省青年科技创新研究团队项目(2019JDTD0017)

STATIC STRENGTH OF CONCRETE FILLED CIRCULAR CFRP-STEEL TUBULAR STUBS UNDER AXIAL COMPRESSION

OU Jia-ling, SHAO Yong-bo   

  1. School of Mechanical Engineering, Southwest Petroleum University, Chengdu 610500, China
  • Received:2018-10-28 Revised:2019-04-19 Online:2019-10-25 Published:2019-04-29

摘要: 对碳纤维增强复合材料(CFRP)加固圆钢管混凝土(C-CFST)短柱的轴向承载力进行了理论研究。基于连续介质力学,考虑钢管与混凝土处于三向应力状态,CFRP处于环向受拉的应力状态,建立了CFRP-圆钢管混凝土(C-CFRP-CFST)短柱的理论分析模型。通过理论推导,得到了轴压作用下C-CFRP-CFST短柱的屈服承载力及极限承载力的理论计算公式,并将理论解与已有试验值做比对,证明了理论公式预测的精度。最后采用提出的理论公式对C-CFRP-CFST短柱的轴向承载性能进行了参数分析。研究表明:提高钢管屈服强度及混凝土立方抗压强度或减小钢管径厚比Ds/ts,都会提高C-CFRP-CFST短柱的极限承载力及屈服承载力;增加CFRP层数和CFRP环向抗拉强度也会提高极限承载力,但CFRP层数对屈服承载力影响较小,CFRP的抗拉强度对屈服承载力没有影响。

关键词: CFRP加固圆钢管混凝土短柱, 理论模型, 屈服承载力, 极限承载力, 轴压作用, 参数分析

Abstract: The static strength of circular concrete filled steel tubular (C-CFST) stubs strengthened with carbon fiber reinforced polymer (CFRP) is studied theoretically. Based on continuum mechanics, a theoretical model of circular CFRP-concrete filled steel tubular (C-CFRP-CFST) stubs under axial compression is established based on the assumptions that steel tube and concrete are both in a three-dimensional stress state and CFRP is in a uniaxial tensile stress state. The equations for calculating the yield strength and the ultimate strength of C-CFRP-CFST stubs under axial compression are deduced. The theoretical predictions from the presented equations are compared with existing experimental results, and the accuracy of the theoretical predictions is verified. Finally, a parametric study is carried out by the predictions of presented equations. The results from parametric study indicate that increasing the yield strength of a steel tube and the compressive strength of concrete or decreasing the diameter/thickness ratio of a steel tube can both improve the yield strength and the ultimate strength of C-CFRP-CFST stubs. The ultimate strength of C-CFRP-CFST stubs can be also improved by increasing the number of CFRP layers and the circumferential tensile strength of CFRP. However, the number of CFRP layers has little influence on the yield strength of C-CFRP-CFST stubs while the tensile strength of CFRP has no influence on such yield strength.

Key words: circular CFRP-steel tubular (C-CFRP-CFST) stubs, theoretical model, yield strength, ultimate strength, axial compression, parametric analysis

中图分类号: 

  • TU375.3
[1] Han L H, Li W, Bjorhovde R. Developments and advanced applications of concrete-filled steel tubular (CFST) structures:Members[J]. Journal of Constructional Steel Research, 2014, 100:211-228.
[2] Liang Q Q. Performance-based analysis of concretefilled steel tubular beam-columns, Part I:Theory and algorithms[J]. Journal of Constructional Steel Research, 2009, 65(2):363-372.
[3] Han L H, Yao G H, Zhao X L. Tests and calculations for hollow structural steel (HSS) stub columns filled with self-consolidating concrete (SCC)[J]. Journal of Constructional Steel Research, 2005, 61(9):241-1269.
[4] 王庆利, 侯婷婷, 李庆刚, 王月. 钢管高性能混凝土轴压短柱的静力性能(Ⅰ):试验研究及有限元模拟[J]. 工业建筑, 2013, 43(3):1-7. Wang Qingli, Hou Tingting, Li Qinggang, Wang Yue. Static performance of the high-performance concrete filled steel tubular stub column (Ⅰ):experimental study and finite element simulation[J]. Industrial Construction, 2013, 43(3):1-7. (in Chinese)
[5] 贺锋, 周绪红, 唐昌辉. 钢管高强混凝土轴压短柱承载力性能的试验研究[J]. 工程力学, 2000, 17(4):61-66. He Feng, Zhou Xuhong, Tang Changhui. Experimental research on the baring behavior of high-strength-filed steel tube under axial compression[J]. Engineering Mechanics, 2000, 17(4):61-66. (in Chinese)
[6] 徐礼华, 吴敏, 周鹏华, 等. 钢管自应力自密实高强混凝土短柱轴心受压承载力试验研究[J]. 工程力学, 2017, 34(3):98-105. Xu Lihua, Wu Min, Zhou Penghua, et al. Experimental investigation on high-strength self-stressing and self-compacting concrete filled steel tube columns subjected to uniaxial compression[J]. Engineering Mechanics, 2017, 34(3):98-105. (in Chinese)
[7] 蔡绍怀, 焦占拴. 钢管混凝土短柱的基本性能和强度计算[J]. 建筑结构学报, 1984, 5(6):13-29. Cai Shaohuai, Jiao Zhansuan. Basic performance and strength calculation of concrete filled steel tubular short columns[J]. Journal of Building Structures, 1984, 5(6):13-29. (in Chinese)
[8] 王庆利, 李瑞霖, 李庆刚, 等. 钢管高性能混凝土轴压短柱的静力性能(Ⅱ):机理分析及承载力[J]. 工业建筑, 2013, 43(3):8-12. Wang Qingli, Li Ruilin, Li Qinggang, et al. Static performance of the high-performance concrete filled steel tubular stub column (Ⅱ):Mechanism analysis and load bearing capacity[J]. Industrial Construction, 2013, 43(3):8-12. (in Chinese)
[9] 卢方伟, 李四平, 孙国钧. 方钢管混凝土轴压短柱的非线性有限元分析[J]. 工程力学, 2007, 24(3):110-114. Lu Fangwei, Li Siping, Sun Guojun. Nonlinear finite element analysis of square concrete-filled steel tube columns under compressive load[J]. Engineering Mechanics, 2007, 24(3):110-114. (in Chinese)
[10] 曲慧, 陶忠, 韩林海. CFST柱-RC梁钢筋环绕式节点抗震性能试验[J]. 工业建筑, 2006, 36(11):27-31, 22. Qu Hui, Tao Zhong, Han Linhai. Experimental investigation on cyclic performance of CFST column-RC beam joints enclosed by rebars[J]. Industrial Construction, 2006, 36(11):27-31, 22. (in Chinese)
[11] Zhang J, Huang Y, Chen Y, et al. Numerical and experimental study on seismic behavior of concrete-filled T-section steel tubular columns and steel beam planar frames[J]. Journal of Central South University, 2018, 25(7):1774-1785.
[12] Wang K, Young B. Fire resistance of concrete-filled high strength steel tubular columns[J]. Thin-walled Structures, 2013, 71(13):46-56.
[13] Han L H, Chen F, Liao F Y, et al. Fire performance of concrete filled stainless steel tubular columns[J]. Engineering Structures, 1998, 56(6):165-181.
[14] Parvin A, Wang W. Behavior of FRP jacketed concrete columns under eccentric loading[J]. Journal of Composites for Construction, 2001, 5(3):146-152.
[15] Che Y, Wang Q L, Shao Y B. Compressive performances of the concrete filled circular CFRP-steel tube (C-CFRP-CFST)[J]. Advanced Steel Construction, 2012, 8(4):331-358.
[16] Hu Y M, Yu T, Teng J G. FRP-confined circular concrete-filled thin steel tubes under axial compression[J]. Journal of Composites for Construction, 2011, 15(5):850-860.
[17] Lu Y, Li N, Li S. Behavior of FRP-confined concrete-filled steel tube columns[J]. Polymers, 2014, 6(5):1333-1349.
[18] 王庆利, 薛阳, 邵永波, 等. CFRP约束方钢管混凝土轴压短柱的静力性能研究[J]. 土木工程学报, 2011, 44(3):24-31. Wang Qingli, Xue Yang, Shao Yongbo, et al. Study of static performance of axially compressed concrete filled square steel tubular stub columns confined by CFRP[J]. China Civil Engineering Journal, 2011, 44(3):24-31. (in Chinese)
[19] 王庆利, 方言, 任庆新. 圆CFRP-钢管混凝土轴压构件静力性能研究[J]. 土木工程学报, 2008, 41(10):21-29. Wang Qingli, Fang Yan, Ren Qingxin. Study on static performance of concentrically compressed concrete filled circular CFRP-steel tubular members[J]. China Civil Engineering Journal, 2008, 41(10):21-29. (in Chinese)
[20] Guo Y, Zhang Y. Comparative study of CFRP-confined CFST stub columns under axial compression[J]. Advances in Civil Engineering, 2018, 2018:1-8.
[21] Tao Z, Han L H, Zhuang J P. Axial loading behavior of CFRP strengthened concrete-filled steel tubular stub columns[J]. Advances in Structural Engineering, 2007, 10(1):37-46.
[22] Wang Q L, Zhao Z, Shao Y B, et al. Static behavior of axially compressed square concrete filled CFRP-steel tubular (S-CF-CFRP-ST) columns with moderate slenderness[J]. Thin-Walled Structures, 2017, 110:106-122.
[23] Wang Q L, Shao Y B. Compressive performances of concrete filled square CFRP-steel tubes[J]. Steel and Composite Structures, 2014, 16(5):455-480.
[24] 王庆利, 王金鱼, 张永丹. CFRP-钢管砼轴压短柱受力性能分析[J]. 工程力学, 2006, 23(8):102-105. Wang Qingli, Wang Jinyu, Zhang Yongdan. Mechanical property analysis on axially compressed concrete filled circular CFRP-steel tube stub columns[J]. Engineering Mechanics, 2006, 23(8):102-105. (in Chinese)
[25] 顾威, 赵颖华, 尚东伟. CFRP-钢管混凝土轴压短柱承载力分析[J]. 工程力学, 2006, 23(1):149-153. Gu Wei, Zhao Yinghua, Shang Dongwei. Load carrying capacity of concrete filled cfrp-steel tubes under axial compression[J]. Engineering Mechanics, 2006, 23(1):149-153. (in Chinese)
[26] Lu L, Lu Y Y. Axial bearing capacity of short FRP confined concrete-filled steel tubular columns[J]. Journal of Wuhan University of Technology (Materials Science Edition), 2010, 25(3):454-458.
[27] Ding F X, Yu Z W, Bai Y, et al. Elasto-plastic analysis of circular concrete-filled steel tube stub columns[J]. Journal of Constructional Steel Research, 2011, 67(10):1567-1577.
[28] Dong C X, Kwan A K H, Ho J C M. Effects of external confinement on structural performance of concrete-filled steel tubes[J]. Journal of Constructional Steel Research, 2017, 132:72-82.
[29] Ding F X, Lu D R, Bai Y, et al. Behaviour of CFRP-confined concrete-filled circular steel tube stub columns under axial loading[J]. Thin-Walled Structures, 2018, 125:107-118.
[1] 蒋友宝, 尹倩倩, 罗军, 付涛. 基于承载力拟合的钢拱不利几何缺陷分析[J]. 工程力学, 2019, 36(S1): 203-209.
[2] 李元龙, 王金相, 林尚剑, 唐奎, 陈兴旺, 黄瑞源. 水下爆炸作用下固支多层片组结构的塑性毁伤研究[J]. 工程力学, 2019, 36(8): 248-256.
[3] 叶冬晨, 陈以一. 基于分块组合法的多孔板塑性极限状态分析[J]. 工程力学, 2019, 36(6): 36-48.
[4] 徐礼华, 宋杨, 刘素梅, 李彪, 余敏, 周凯凯. 多腔式多边形钢管混凝土柱偏心受压承载力研究[J]. 工程力学, 2019, 36(4): 135-146.
[5] 李天娥, 孙晓颖, 武岳, 王长国. 软式平流层飞艇气弹模型相似参数分析[J]. 工程力学, 2019, 36(3): 240-246,256.
[6] 李海涛, 张振华, 牟金磊, 刘丽滨. 水下爆炸作用下弹塑性船体梁整体运动模型及损伤特性[J]. 工程力学, 2019, 36(1): 238-247,256.
[7] 李天娥, 孙晓颖, 武岳, 王长国. 平流层飞艇气动阻力的参数分析[J]. 工程力学, 2019, 36(1): 248-256.
[8] 钱蓝萍, 李易, 陆新征, 闫维明. 小型汽车撞击后框架柱剩余承载力的数值研究[J]. 工程力学, 2018, 35(S1): 313-319.
[9] 朱崇绩, 董毓利. 火灾下邻边简支邻边固支双向板极限承载力的能量计算法[J]. 工程力学, 2018, 35(8): 67-78,99.
[10] 王景玄, 王文达, 李华伟. 钢管混凝土平面框架子结构抗连续倒塌精细有限元分析[J]. 工程力学, 2018, 35(6): 105-114.
[11] 胡雄玉, 何川, 杨清浩, 吴迪. 管片衬砌配合陶粒可压缩层的支护结构与围岩相互作用模型[J]. 工程力学, 2018, 35(3): 86-95.
[12] 朱经纬, 王春生, 翟晓亮. 圆管翼缘钢-混凝土新型组合梁负弯矩区力学性能试验研究[J]. 工程力学, 2018, 35(12): 124-133.
[13] 陈明, 王启. 内填钢板墙双肢冷轧C型钢框架抗震性能[J]. 工程力学, 2018, 35(12): 175-184.
[14] 张中昊, 支旭东, 李奇训, 汪恩良. 新型索撑式单层球面网壳选型与预应力张拉模拟研究[J]. 工程力学, 2018, 35(10): 193-202,211.
[15] 毛文婧, 史艳莉, 王文达. 内配型钢圆钢管混凝土轴压短柱在不同含钢率下承载力分析[J]. 工程力学, 2017, 34(增刊): 63-70.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张冬娟;崔振山;李玉强;阮雪榆. 平面应变板料拉弯成形回弹理论分析[J]. 工程力学, 2007, 24(7): 0 -071 .
[2] 何浩祥;闫维明;陈彦江. 地震动加加速度反应谱的概念及特性研究[J]. 工程力学, 2011, 28(11): 124 -129 .
[3] 袁振伟;王海娟;岳希明;褚福磊. 密封进口涡动系数对转子系统动力学性能的影响[J]. 工程力学, 2011, 28(11): 231 -236 .
[4] 王有凯;龚耀清. 任意荷载作用下层状横观各向同性弹性地基的直角坐标解[J]. 工程力学, 2006, 23(5): 9 -13,1 .
[5] 史姣;王正中;蔡坤. 张量分析中简化记法在公式推导中的应用及张量分量的计算[J]. 工程力学, 2006, 23(10): 45 -48 .
[6] 章 敏;蔡国平. 密集频率柔性板的内平衡模型降阶及其主动控制[J]. 工程力学, 2009, 26(11): 161 -166 .
[7] 曹树谦;;陈予恕;. 现代密封转子动力学研究综述[J]. 工程力学, 2009, 26(增刊Ⅱ): 68 -079 .
[8] 叶 昆;李 黎;. 改进的Kelvin碰撞分析模型[J]. 工程力学, 2009, 26(增刊Ⅱ): 245 -248 .
[9] 郑健龙;陈 骁;钱国平. 松散热态沥青混合料压实力学响应及其粘弹塑性模型参数分析[J]. 工程力学, 2010, 27(1): 33 -040 .
[10] 吴丽丽;聂建国. 四边简支钢-混凝土组合板的弹性局部剪切屈曲分析[J]. 工程力学, 2010, 27(1): 52 -057 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日