工程力学 ›› 2019, Vol. 36 ›› Issue (10): 172-179.doi: 10.6052/j.issn.1000-4750.2018.10.0576

• 土木工程学科 • 上一篇    下一篇

轴压荷载下钢管钢筋混凝土损伤状态超声检测研究

陈猛, 贾益铭, 陈耕野, 迟东, 王宇涵   

  1. 东北大学资源与土木工程学院, 辽宁, 沈阳 110819
  • 收稿日期:2018-10-28 修回日期:2019-01-24 出版日期:2019-10-25 发布日期:2019-03-25
  • 通讯作者: 陈猛(1981-),男(满族),辽宁铁岭人,讲师,博士,从事钢与混凝土组合结构研究(E-mail:cmwhut@163.com). E-mail:cmwhut@163.com
  • 作者简介:贾益铭(1999-),男,辽宁盘锦人,本科生,从事钢与混凝土组合结构研究(E-mail:elmin1999@163.com);陈耕野(1955-),男,湖北广济人,教授,博士,从事结构检测技术研究(E-mail:chengengye@mail.neu.edu.cn);迟东(1997-),男,安徽马鞍山人,本科生,从事钢与混凝土组合结构研究(E-mail:565566@163.com);王宇涵(1998-),男,河南平顶山人,本科生,从事钢与混凝土组合结构研究(E-mail:20161639@stu.neu.edu.cn).
  • 基金资助:
    辽宁省自然科学基金项目(20170540304);国家级大学生创新创业训练计划项目(201810145047);硅酸盐建筑材料国家重点实验室(武汉理工大学)开放基金项目(SYSJJ2017-08);中央高校基本科研业务专项资金项目(N170104023)

RESEARCH ON THE DAMAGE CONDITION OF REINFORCED CONCRETE FILLED STEEL TUBES UNDER AXIAL LOAD USING ULTRASONIC TESTING

CHEN Meng, JIA Yi-ming, CHEN Geng-ye, Chi Dong, WANG Yu-han   

  1. School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
  • Received:2018-10-28 Revised:2019-01-24 Online:2019-10-25 Published:2019-03-25

摘要: 在轴压荷载下分别对素混凝土、钢筋混凝土、钢管混凝土和钢管钢筋混凝土的损伤状态进行超声检测,得到不同荷载下超声通过柱的中截面的波形图,定义波形图均方根振幅和均方根振幅比,并分析混凝土裂隙的变化过程。通过对波形图进行快速傅里叶变换得到频谱图,基于固体介质裂化吸收高频声波能量,使超声主频向低频移动的原理,应用频谱图的第一主频及其幅值变化分析钢管内混凝土和钢筋混凝土的损伤演变过程。结果表明:声波波形均方根振幅、均方根振幅比和第一主频及其幅值可以有效反映钢管内混凝土和钢筋混凝土的裂隙变化情况。轴压荷载作用下钢管内钢筋混凝土的损伤呈五段式变化,分别为核心混凝土裂缝产生并发展、混凝土在钢管约束作用下逐步密实、混凝土裂缝迅速扩展、钢管套箍作用加强段和钢管屈曲后构件丧失承载力。通过钢管外壁的应变分析,表明钢管对核心混凝土的约束作用阶段与超声检测判定的混凝土损伤演化过程一致。超声波技术可以准确检测轴压荷载作用下钢管内钢筋混凝土的损伤状态并确定钢管对混凝土套箍作用的发挥阶段。

关键词: 超声检测, 钢管钢筋混凝土, 损伤状态, 波形图, 均方根振幅, 频谱

Abstract: The ultrasonic technique was used to evaluate the damage conditions of plain concrete, reinforced concrete, concrete filled steel tubes (CFST) and reinforced concrete filled steel tubes (RCFST) subjected to axial load. The ultrasonic waveforms passing through the middle section of a column were obtained under different loads. The root mean square (RMS) amplitude and RMS amplitude ratio of waveforms are defined for analyzing the development of concrete cracks. The waveforms were transformed into the frequency domain by fast Fourier transform (FFT). According to the principle that the solid medium cracking absorbs high frequency sound wave energy that makes the ultrasonic main frequency shift from high to low frequency, the first main frequency and its amplitude variation were selected to investigate the damage condition of concrete and reinforced concrete in steel tubes. The experimental results show that the crack variation of concrete and reinforced concrete in steel tubes can be effectively reflected by the RMS amplitude, RMS amplitude ratio and the first main frequency and its amplitude. The damage condition of reinforced concrete under axial load can be divided into five stages, that is, the concrete crack generation and extension, concrete compaction resulted from steel tubular constraint, concrete crack rapid expansion, strengthening due to the steel tubular hoop effect and loss of component strength after the buckling of steel tubes. It is found that the constraint stage of steel tube to core concrete obtained from the strain analysis of steel tube is consistent with the damage evolution obtained from ultrasonic testing. Therefore, the ultrasonic testing method is an accurate tool to evaluate the damage of reinforced concrete inside steel tubes under axial load and to determine the hoop effect of steel tubes.

Key words: ultrasonic testing, reinforced concrete filled steel tube, damage condition, waveform, root mean square (RMS) amplitude, frequency spectrum

中图分类号: 

  • TU398
[1] 丁敏, 汪友弟, 代春辉, 等. 钢管混凝土轴心受压构件的徐变预测模型及其徐变性能分析[J]. 工程力学, 2017, 34(6):166-177. Ding Min, Wang Youdi, Dai Chunhui, et al. Creep calculation and behavior analysis of concrete-filled steel tubular member under axial compression[J]. Engineering Mechanics, 2017, 34(6):166-177. (in Chinese)
[2] Han Linhai, Liu Wei, Yang Youfu. Behaviour of concrete-filled steel tubular stub columns subjected to axially local compression[J]. Journal of Constructional Steel Research, 2007, 64(4):377-387.
[3] 陈宗平, 刘祥, 周文祥. 高温后圆钢管高强混凝土界面黏结性能试验研究[J]. 工程力学, 2018, 35(8):192-200, 256. Chen Zongping, Liu Xiang, Zhou Wenxiang. Interface bond behavior between circle steel tube and high strength concrete after high temperatures[J]. Engineering Mechanics, 2018, 35(8):192-200, 256. (in Chinese)
[4] 叶勇, 韩林海, 陶忠. 脱空对圆钢管混凝土受剪性能的影响分析[J]. 工程力学, 2016, 33(增刊):62-66, 71. Ye Yong, Han Linhai, Tao Zhong. Effects of gaps on the behavior of circular CFST[J]. Engineering Mechanics, 2016, 33(Suppl):62-66, 71. (in Chinese)
[5] 王卫华, 张伟, 白杨, 等. 高温下内配圆管的方钢管混凝土柱轴压力学性能[J]. 工程力学, 2018, 35(3):141-150. Wang Weihua, Zhang Wei, Bai Yang, et al. Axial performance of square concrete-filled steel tube (CFST) columns reinforced by circular steel tubes at elevated temperatures[J]. Engineering Mechanics, 2018, 35(3):141-150. (in Chinese)
[6] 朱自强, 喻波, 密士文, 等. 超声波在混凝土中的衰减特征[J]. 中南大学学报(自然科学版), 2014, 45(11):3900-3907. Zhu Ziqiang, Yu Bo, Mi Shiwen, et al. Ultrasonic attenuation characteristics of ultrasonic in concrete[J]. Journal of Central South University (Science and Technology), 2014, 45(11):3900-3907. (in Chinese)
[7] 王怀亮, 宋玉普. 不同尺寸混凝土试件受压状态下超声波传播特性研究[J]. 大连理工大学学报, 2007, 47(1):90-94. Wang Huailiang, Song Yupu. Ultrasonic pulses behavior in various-size concrete specimens under compression[J]. Journal of Dalian University of Technology, 2007, 47(1):90-94. (in Chinese)
[8] Godinho L, Dias-da-Costa D, Areias P, et al. Numerical study towards the use of a SH wave ultrasonic-based strategy for crack detection in concrete structures[J]. Engineering Structures, 2013, 49:782-791
[9] Freeseman Katelyn, Khazanovich Lev, Hoegh Kyle, et al. Nondestructive monitoring of subsurface damage progression in concrete columns damaged by earthquake loading[J]. Engineering Structures, 2016, 114:148-157
[10] Park Sun-Jong, Kim Gyu Jin, Kwak Hyo-Gyoung. Characterization of stress-dependent ultrasonic nonlinearity variation in concrete under cyclic loading using nonlinear resonant ultrasonic method[J]. Construction and Building Materials, 2017, 145(11):272-282.
[11] Schickert M.. Progress in ultrasonic imaging of concrete[J]. Materials and Structures, 2005, 38(9):807-815.
[12] 刘永前, 张彦兵, 邹振祝. 超声波检测钢管混凝土拱桥密实度的试验研究[J]. 北方交通大学学报, 2004, 28(4):54-57. Liu Yongqian, Zhang Yanbing, Zou Zhenzhu. Study of ultrasonic detection and evaluation for the deficiency of concrete_filled steel tube arch bridge[J]. Journal of Northern Jiaotong University, 2004, 28(4):54-57. (in Chinese)
[13] Nevbahar S, Osman U. Prediction of reinforced concrete strength by ultrasonic velocities[J]. Journal of Applied Geophysics, 2017, 141(6):13-23.
[14] Beutel R, Reinhardt H W, Grosse C, et al. Comparative performance tests and validation of NDT methods for concrete testing[J]. Journal of Nondestructive Evaluation, 2008, 27(1):59-65.
[15] 徐长武, 任志刚, 荣耀, 等. 小直径钢管混凝土密实度的超声波检测试验[J]. 武汉理工大学学报, 2013, 35(3):88-92. Xu Changwu, Ren Zhigang, Rong Yao, et al. Experimental of ultrasonic testing on compactedness of small diameter concrete filled steel tube[J]. Journal of Wuhan University of Technology, 2013, 35(3):88-92. (in Chinese)
[16] 檀永杰, 徐波, 吴智敏, 等. 基于超声对测法的钢管混凝土脱空检测试验[J]. 建筑科学与工程学报, 2012, 29(2):102-110. Tan Yongjie, Xu Bo, Wu Zhimin, et al. Experiment on void area testing of concrete filled steel tube based on ultrasonic testing method[J]. Journal of Architecture and Civil Engineering, 2012, 29(2):102-110. (in Chinese).
[17] Dong Wei, Wu Zhimin, Zhou Xiangming, et al. Experimental studies on void detection in concrete-filled steel tubes using ultrasound[J]. Construction and Building Materials, 2016, 128(12):154-162.
[18] 林维正, 秦效启, 陈之毅, 等. 方形钢管混凝土超声波检测技术[J]. 建筑材料学报, 2003(2):190-194. Lin Weizheng, Qin Xiaoqi, Chen Zhiyi, et al. Ultrasonic testing for square steel-pipe concrete[J]. Journal of Building Materials, 2003, 6(2):190-194. (in Chinese)
[1] 王小雯, 张建民. 随机波浪作用下饱和砂质海床弹塑性动力响应规律[J]. 工程力学, 2018, 35(6): 240-248,256.
[2] 张玉琢, 吕学涛, 王微微. 受火后方钢管钢筋混凝土短柱剩余承载力研究[J]. 工程力学, 2016, 33(11): 113-120.
[3] 韩强,周雨龙,杜修力. 钢筋混凝土矩形空心桥墩抗震性能[J]. 工程力学, 2015, 32(3): 28-40.
[4] 苟向锋, 陈代林. 双参变量下齿轮-转子系统扭转振动特性分析[J]. 工程力学, 2014, 31(11): 211-217.
[5] 李小珍,刘孝寒,张迅,李亚东. 基于相干分析的高铁简支箱梁结构噪声源识别方法研究[J]. 工程力学, 2014, 31(1): 129-136.
[6] 潘旦光. 直接确定Rayleigh阻尼系数的一种优化方法[J]. 工程力学, 2013, 30(9): 16-21.
[7] 张 威,马玉祥,董国海,赫岩丽 . 初始均匀波列调制演化的实验研究[J]. 工程力学, 2013, 30(3): 464-469.
[8] 杨党国;李建强;蒋卫民;罗新福;吴继飞. 不同马赫数下长深比对空腔声学特性的影响[J]. 工程力学, 2011, 28(12): 221-225,.
[9] 陈 亮;李建中. 地震波的反应谱谱形对RC梁桥结构非线性地震反应的影响[J]. 工程力学, 2011, 28(10): 86-092,.
[10] 宋向荣;李建康;席桂东. 汽车异常振动振源识别的试验研究[J]. 工程力学, 2010, 27(9): 227-233.
[11] 张 楠;夏 禾;G. De Roeck. 车桥系统频谱及参数敏感性分析[J]. 工程力学, 2009, 26(11): 197-202.
[12] 张立翔;黄文虎;A. S. Tijsseling. 水锤诱发弱约束管道流固耦合振动频谱分析[J]. 工程力学, 2000, 17(1): 1-12.
[13] 冯文杰;薛德庆;邹振祝. 广义Pochhammer频谱特性分析[J]. 工程力学, 1999, 16(1): 43-48.
[14] 朱金颖;陈龙珠;严细水. 混凝土受力状态下超声波传播特性研究[J]. 工程力学, 1998, 15(3): 111-117.
[15] 王其申;王大钧;何北昌. 由频谱数据构造两端铰支梁的差分离散系统[J]. 工程力学, 1991, 8(4): 10-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周小平;杨海清;张永兴. 有限宽偏心裂纹板在裂纹面受两对集中拉力作用时裂纹线的弹塑性解析解[J]. 工程力学, 2008, 25(1): 0 -027 .
[2] 张伯艳;陈厚群. LDDA动接触力的迭代算法[J]. 工程力学, 2007, 24(6): 0 -006 .
[3] 陈有亮;邵伟;周有成. 水饱和混凝土单轴压缩弹塑性损伤本构模型[J]. 工程力学, 2011, 28(11): 59 -063, .
[4] 吴方伯;黄海林;陈伟;周绪红;. 肋上开孔对预制预应力混凝土带肋薄板施工阶段挠度计算方法的影响研究[J]. 工程力学, 2011, 28(11): 64 -071 .
[5] 李宗利;杜守来. 高渗透孔隙水压对混凝土力学性能的影响试验研究[J]. 工程力学, 2011, 28(11): 72 -077 .
[6] 王坤;谢康和;李传勋;童磊. 特殊条件下考虑起始比降的双层地基一维固结解析解[J]. 工程力学, 2011, 28(11): 78 -082 .
[7] 姜亚洲;任青文;吴晶;杜小凯. 基于双重非线性的混凝土坝极限承载力研究[J]. 工程力学, 2011, 28(11): 83 -088 .
[8] 吴明;彭建兵;徐平;孙苗苗;夏唐代. 考虑土拱效应的挡墙后土压力研究[J]. 工程力学, 2011, 28(11): 89 -095 .
[9] 陆本燕;刘伯权;邢国华;吴涛. 桥梁结构基于性能的抗震设防目标与性能指标研究[J]. 工程力学, 2011, 28(11): 96 -103, .
[10] 左志亮;蔡健;钟国坤;杨春;. 带约束拉杆T形截面钢管内核心混凝土的等效单轴本构关系[J]. 工程力学, 2011, 28(11): 104 -113 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日