工程力学 ›› 2019, Vol. 36 ›› Issue (10): 164-171,222.doi: 10.6052/j.issn.1000-4750.2018.10.0566

• 土木工程学科 • 上一篇    下一篇

基于敏感性分析的结构抗倒塌能力提升方法研究

朱南海1,2, 贺小玲1,2   

  1. 1. 江西理工大学建筑与测绘工程学院, 赣州 341000;
    2. 江西省环境岩土与工程灾害控制重点实验室, 赣州 341000
  • 收稿日期:2018-10-25 修回日期:2019-03-01 出版日期:2019-10-25 发布日期:2019-03-25
  • 通讯作者: 朱南海(1981-),男,江西人,副教授,博士,主要从事大跨空间结构研究(E-mail:zhunanhai@jxust.edu.cn). E-mail:zhunanhai@jxust.edu.cn
  • 作者简介:贺小玲(1994-),女,广西人,硕士生,主要从事钢结构研究(E-mail:184404199@qq.com).
  • 基金资助:
    国家自然科学基金项目(51408276,51768024);江西省自然科学基金项目(20151BAB216023,20181BAB206039);江西省教育厅科技项目(GJJ160618);江西理工大学清江青年英才支持计划项目(JXUSTQJYX2018009)

A METHOD FOR THE ENHANCEMENT OF STRUCTURAL ANTI-COLLAPSE CAPACITY BASED ON SENSITIVITY ANALYSIS

ZHU Nan-hai1,2, HE Xiao-ling1,2   

  1. 1. School of Architectural and Surveying Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China;
    2. Jiangxi Provincial Key Laboratory of Environmental Geotechnical Engineering and Disaster Control, Ganzhou 341000, China
  • Received:2018-10-25 Revised:2019-03-01 Online:2019-10-25 Published:2019-03-25

摘要: 为提高荷载作用下结构抵抗倒塌破坏的能力,该文基于构件应变能对材料弹性模量的敏感性及构件失效后对结构应变能的影响,提出了静载下的构件易损性及其冗余度评价指标,以衡量构件受损破坏的容易性及其失效后对结构整体性能的影响。在此基础上通过加强冗余低、易损性高的构件,同时对冗余度高、易损性低的构件进行适当削弱,充分发挥各构件在结构中的作用,使构件的破坏顺序发生转变。结果表明,构件的易损性、冗余度系数值的大小能够反映构件发生破坏的容易性及其失效对结构整体性能的影响。根据构件的冗余度、易损性分布,通过调整构件的截面面积,可以实现结构"低易损-高冗余"非重要构件的破坏先于"高易损-低冗余"结构关键构件,从而改变荷载作用下的结构破坏路径,有效提升了结构的极限承载能力和抗连续倒塌的能力。

关键词: 杆系结构, 结构鲁棒性, 应变能, 冗余度, 易损性, 结构倒塌

Abstract: To increase the structural anti-collapse capacity, and to reveal the fragility of structural member and its failure effort on the structural performance, two evaluation indexes were established to measure the vulnerability and redundancy of structural member based on the sensitivity of strain energy of member to material elastic modulus. The change of structural strain energy caused by the failure of member was also taken as an important parameter in the redundancy index. Then, the members with high vulnerability and low redundancy were strengthened, and the ones with low vulnerability and high redundancy were weakened by the means of increasing or reducing the section area of member. By this way, the structural member failure sequence was changed, and all the members could be fully utilized. The results show that the coefficient value of redundancy and vulnerability can reflect the fragility and the failure effort of structural member, respectively. By adjusting the member section area according to the distribution of structural redundancy and vulnerability, the less-important members which have low vulnerability and high redundancy will be failed before the key members which have high vulnerability and low redundancy. Thus, the structural failure path will be transformed to a safe way, and the loading capacity and the ability to resist progressive collapse of the structure can be enhanced effectively.

Key words: skeletal structures, structural robustness, strain energy, redundancy, vulnerability, structure collapse

中图分类号: 

  • TU311
[1] Ghosn M, Duenas-Osorio L, Frangopol D M. Performance indicators for structural systems and infrastructure networks[J]. Journal of Structure Engineering, 2016, 142(9):F4016003-1-F4016003-18.
[2] Agarwal J, Blockley D I, Woodman N J. Vulnerability of structural systems[J]. Structure Safety, 2003, 25(3):263-286.
[3] Feng Y S, Moses F. Optimum design, redundancy and reliability of structural systems[J]. Computers and Structures, 1986, 24(2):239-251.
[4] Shivaish N, Furata H. Reliability analysis based on fuzzy probability[J]. Journal of Engineering Mechanics, 1983, 109(6):1445-1452.
[5] 王光远. 结构服役期间的动态可靠度及其维修理论初探[J]. 哈尔滨建筑工程学院学报, 1990, 23(2):1-9. Wang Guangyuan. The exploration of theory of decision for the maintenance and repair of structures[J]. Journal of Harbin University of Civil Engineering and Architecture, 1990, 23(2):1-9. (in Chinese)
[6] 日本钢结构协会, 陈以一, 赵宪忠. 高冗余度钢结构倒塌控制设计指南[M]. 上海:同济大学出版社, 2007:77-89. Japanese Society of Steel Construction, Chen Yiyi, Zhao Xianzhong. Guidelines for collapse control design:Construction of steel buildings with high redundancy[M]. Shanghai:Tongji University Press, 2007:77-89. (in Chinese)
[7] Pandey P C, Barai S V. Structural sensitivity as a measure of redundancy[J]. Journal of Structural Engineering, 1997, 123(3):360-364.
[8] 朱南海, 叶继红.地震作用下基于响应敏感性的单层球面网壳冗余度分析方法研究[J]. 计算力学学报, 2014, 31(2):192-198. Zhu Nanhai, Ye Jihong. Redundancy of single-layer reticulated dome under earthquake action based on response sensitivity[J]. Chinese Journal of Computational Mechanics, 2014, 31(2):192-198. (in Chinese)
[9] 朱南海, 叶继红. 静力荷载作用下基于敏感性的单层球壳冗余度分析方法研究[J]. 振动与冲击, 2013, 32(11):35-40. Zhu Nanhai, Ye Jihong. Redundancy of a single-layer reticulated dome under static load based on response sensitivity[J]. Journal of Vibration and Shock, 2013, 32(11):35-40. (in Chinese)
[10] Yoshihiro Kanno, Yakov Ben-Haim. Redundancy and robustness, or when is redundancy redundant[J]. Journal of Structural Engineering, 2011, 137(9):935-945.
[11] Yoshihiro Kanno. Redundancy Optimization of finite dimensional structures:A concept and derivative-free algorithm[J]. Journal of Structural Engineering, 2017, 143(1):04016151-1-04016151-10.
[12] 黄冀卓, 王湛. 钢框架结构鲁棒性评估方法[J]. 土木工程学报, 2012, 45(9):46-54. Huang Jizhuo, Wang Zhan. An approach for evaluation of the structural robustness of steel frames[J]. China Civil Engineering Journal, 2012, 45(9):46-54. (in Chinese)
[13] 徐颖, 韩庆华, 练继建. 单层球面网壳抗连续倒塌性能研究[J]. 工程力学, 2016, 33(11):105-112. Xu Ying, Han Qinghua, Lian Jijian. Progressive collapse performance of single-layer latticed shells[J]. Engineering Mechanics, 2016, 33(11):105-112. (in Chinese)
[14] 蒋淑慧, 袁行飞, 马烁. 考虑冗余度的杆系结构构件重要性评价方法[J]. 哈尔滨工业大学学报, 2018, 50(12):187-192. Jiang Shuhui, Yuan Xingfei, Ma Shuo. An evaluation method for component important of pin-jointed structures considering structural redundancy[J]. Journal of Harbin Institute of Technology, 2018, 50(12):187-192. (in Chinese)
[15] 柳承茂, 刘西拉. 基于刚度的构件重要性评估及其与冗余度的关系[J]. 上海交通大学学报, 2005, 39(5):746-750. Liu Chengmao, Liu Xila. Stiffness-based evaluation of component importance and its relationship with redundancy[J]. Journal of Shanghai Jiaotong University, 2005, 39(5):746-750. (in Chinese)
[16] 叶列平, 林旭川, 曲哲, 等. 基于广义结构刚度的构件重要性评价方法[J]. 建筑科学与工程学报, 2010, 27(1):1-6. Ye Lieping, Lin Xuchuan, Qu Zhe, et al. Evaluating method of element importance of structural system based on generalized structural stiffness[J]. Journal of Architecture and Civil Engineering, 2010, 27(1):1-6. (in Chinese)
[17] Jianguo Cai, Wenwen Jia, jian Feng, et al. Applications of stiffness-based evaluation method to element importance of truss system[J]. Journal of Civil Engineering and Management, 2017, 23(5):562-572.
[18] Chen Yongliang, Huang Liang, Lu Yiqiu, et al. Assessment of structural robustness under different events according to vulnerability[J]. Journal of Performance of Constructed Facilities, 2016, 30(5):04016004-1-04016004-13.
[19] 黄靓, 李龙. 一种结构鲁棒性量化方法[J]. 工程力学, 2012, 29(8):213-219. Huang Liang, Li Long. A quantification method of structural robustness[J]. Engineering Mechanics, 2012, 29(8):213-219. (in Chinese)
[20] Mohammad R. Ameri, Ali Massumi, Hassan Masoomi. Effect of structural redundancy on progressive collapse resistance enhancement in RC frame structures[J]. Journal of Performance of Constructed Facilities, 2019, 33(1):04018092-1-04018092-12.
[21] Ye Jihong, Jiang Liqiang. Collapse mechanism analysis of a steel moment frame based on structural vulnerability theory[J]. Archives of Civil and Mechanical Engineering, 2018, 18(3):833-843.
[22] Zhu Nanhai, Ye Jihong. Structural vulnerability of a single-layer dome based on its form[J]. Journal of Engineering Mechanics ASCE, 2014, 140(1):112-127.
[23] 陆明飞, 叶继红. 基于构形易损性理论的单层网壳结构静力稳定性研究[J]. 工程力学, 2017, 34(1):76-84. Lu Mingfei, Ye Jihong. Static stability research on single-layer spherical shells based on form vulnerability theory[J]. Engineering Mechanics, 2017, 34(1):76-84. (in Chinese)
[1] 吕大刚, 刘洋, 于晓辉. 第二代基于性能地震工程中的地震易损性模型及正逆概率风险分析[J]. 工程力学, 2019, 36(9): 1-11,24.
[2] 吴巧云, 王涛, 魏敏, 朱宏平. 基于地震碰撞易损性的相邻结构临界间距研究[J]. 工程力学, 2019, 36(7): 89-98.
[3] 王东明, 高永武. 城市建筑群概率地震灾害风险评估研究[J]. 工程力学, 2019, 36(7): 165-173.
[4] 李戚齐, 曲哲, 解全才, 王多智. 我国公共建筑中吊顶的震害特征及其易损性分析[J]. 工程力学, 2019, 36(7): 207-215.
[5] 尚庆学, 李泽, 刘瑞康, 王涛. 管线系统抗震支架力学试验研究[J]. 工程力学, 2018, 35(S1): 120-125,133.
[6] 李宏男, 成虎, 王东升. 桥梁结构地震易损性研究进展述评[J]. 工程力学, 2018, 35(9): 1-16.
[7] 张耀庭, 杨力, 张江, 张诚诚. PC框架结构基于易损性的“强柱弱梁”设计方法研究[J]. 工程力学, 2018, 35(7): 104-116.
[8] 姚新强, 孙柏涛, 杨在林, 陈宇坤, 杨绪连. 地震灾害农居易损性新方法研究[J]. 工程力学, 2018, 35(6): 191-199.
[9] 孙小云, 韩建平, 党育, 周颖. 地震动持时对考虑梁柱节点区不同破坏模式RC框架的地震易损性影响[J]. 工程力学, 2018, 35(5): 193-203.
[10] 魏标, 杨添涵, 蒋丽忠. 轨道结构建模精细化程度对高速铁路连续梁桥地震易损性的影响[J]. 工程力学, 2018, 35(4): 16-23,51.
[11] 孙晓丹, 曾程, 杨成, 李永恒, 常志旺. 基于有限断层随机地震动合成的高速路网地震危险性分析[J]. 工程力学, 2018, 35(4): 186-199.
[12] 李勇, 闫维明, 刘晶波, 解梦飞. 近断层高架连续梁桥地震易损性与振动台试验研究[J]. 工程力学, 2018, 35(4): 52-60,86.
[13] 陈力波, 黄才贵, 谷音. 基于改进响应面法的公路简支梁桥地震易损性分析[J]. 工程力学, 2018, 35(4): 208-218.
[14] 王树和, 张举兵. 基于地震损失风险钢筋混凝土框架结构弯矩增大系数评估[J]. 工程力学, 2018, 35(3): 132-140.
[15] 王丰, 李宏男. 基于简化IDA的结构地震损伤评估方法[J]. 工程力学, 2018, 35(12): 194-202.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张冬娟;崔振山;李玉强;阮雪榆. 平面应变板料拉弯成形回弹理论分析[J]. 工程力学, 2007, 24(7): 0 -071 .
[2] 何浩祥;闫维明;陈彦江. 地震动加加速度反应谱的概念及特性研究[J]. 工程力学, 2011, 28(11): 124 -129 .
[3] 王进廷;张楚汉;金峰. 有阻尼动力方程显式积分方法的精度研究[J]. 工程力学, 2006, 23(3): 1 -5 .
[4] 吕伟荣;王猛;刘锡军. 灌芯混凝土砌块砌体破坏准则研究[J]. 工程力学, 2011, 28(11): 251 -256 .
[5] 韩艳;夏禾;郭薇薇. 斜拉桥在地震与列车荷载同时作用下的动力响应分析[J]. 工程力学, 2006, 23(1): 93 -98,6 .
[6] 李建宇;李兴斯. 基于互补模型的弹塑性桁架结构灵敏度分析过程[J]. 工程力学, 2006, 23(2): 149 -152, .
[7] 罗银淼;应祖光. 水闸钢拉索的不稳定振动分析[J]. 工程力学, 2006, 23(2): 153 -156 .
[8] 王有凯;龚耀清. 任意荷载作用下层状横观各向同性弹性地基的直角坐标解[J]. 工程力学, 2006, 23(5): 9 -13,1 .
[9] 隋允康;彭细荣;叶红玲. 应力约束全局化处理的连续体结构ICM拓扑优化方法[J]. 工程力学, 2006, 23(7): 1 -7 .
[10] 彭华;游春华;孟勇. 模态曲率差法对梁结构的损伤诊断[J]. 工程力学, 2006, 23(7): 49 -53,7 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日