工程力学 ›› 2019, Vol. 36 ›› Issue (10): 28-39.doi: 10.6052/j.issn.1000-4750.2018.10.0560

• 基本方法 • 上一篇    下一篇

基于GPU并行的锥体导管架平台结构冰激振动DEM-FEM耦合分析

王帅霖1, 刘社文2, 季顺迎1   

  1. 1. 大连理工大学工业装备结构分析国家重点实验室, 大连 116023;
    2. 大连海事大学船舶与海洋工程学院, 大连 116023
  • 收稿日期:2018-10-19 修回日期:2019-05-30 出版日期:2019-10-25 发布日期:2019-06-05
  • 通讯作者: 季顺迎(1972-),男,河北人,教授,博士,博导,主要从事计算颗粒力学及工程应用研究(E-mail:jisy@dlut.edu.cn). E-mail:jisy@dlut.edu.cn
  • 作者简介:王帅霖(1990-),男,辽宁人,博士生,从事寒区海洋结构冰激响应研究(E-mail:dlut_wsl@sina.com);刘社文(1966-),男,湖北人,教授,博士,博导,主要从事极地海洋工程研究(E-mail:liushewen@dlmu.edu.cn).
  • 基金资助:
    国家重点研发计划项目(2016YCF1401505,2016YFC1402706);国家自然科学基金项目(41576179,51639004)

COUPLED DISCRETE-FINITE ELEMENT ANALYSIS FOR ICE-INDUCED VIBRATION OF CONICAL JACKET PLATFORM BASED ON GPU-BASED PARALLEL ALGORITHM

WANG Shuai-lin1, LIU She-wen2, JI Shun-ying1   

  1. 1. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116023, China;
    2. Naval Architecture and Ocean Engineering College, Dalian Maritime University, Dalian 116023, China
  • Received:2018-10-19 Revised:2019-05-30 Online:2019-10-25 Published:2019-06-05

摘要: 该文为分析海冰与锥体海洋平台的相互作用,采用离散元(DEM)-有限元(FEM)耦合方法建立冰激海洋平台结构的耦合模型。通过具有粘结-破碎性能的球体离散单元对海冰的漂移及破碎现象进行计算,海洋平台锥体部分采用平板型壳单元构造,其整体构架及锥体内部的加劲肋采用梁单元构造,即建立壳单元与梁单元组合的锥体海洋平台有限元模型。为提高DEM-FEM耦合算法的计算规模和效率,发展了离散单元与平板型壳单元接触算法及GPU并行环境下参数传递算法。基于此耦合模型分别讨论了平台结构的冰载荷、冰激振动以及锥体应力分布,并与相关实测数据进行对比,为寒区锥体海洋平台的结构设计提供有益的参考。

关键词: 冰载荷, 冰激振动, 锥体导管架平台, DEM-FEM耦合, GPU并行

Abstract: A coupled discrete element method (DEM) and finite element method (FEM) is developed to analyze the interaction between sea ice and conical jacket platforms. To model the ice cover and investigate ice loads, a DEM with bond-breaking spherical elements is adopted. Meanwhile, the FEM (with a beam element and flat shell element) is applied to model the ice-induced vibrations (ⅡVs) of a conical jacket platform. The graphics processing unit (GPU)-based parallel algorithm is developed to improve the computational scale and efficiency of the coupled model. An efficient transmission scheme between the bond-breaking spherical elements and the flat shell element based on GPU is proposed. Base on the proposed method, the simulated ice loads, ⅡVs and stress distributions are discussed and verified by comparing them with the full-scale data. This study provides a useful reference for the structure design of conical jacket structures in cold regions.

Key words: ice load, ice-induced vibration, conical jacket platform, coupled DEM-FEM method, GPU-based parallel algorithm

中图分类号: 

  • O343.3
[1] 徐田甜, 张晓, 崔航. 我国海上导管架平台抗冰锥体的设计实践[J]. 船舶工程, 2010, 32(2):73-77. Xu Tiantian, Zhang Xiao, Cui Hang. Design practices of anti-ice structure on offshore jacket platform of our country[J]. Ship Engineering, 2010, 32(2):73-77. (in Chinese)
[2] 岳前进, 许宁, 崔航, 等. 导管架平台安装锥体降低冰振效果研究[J]. 海洋工程, 2011, 29(2):18-24. Yue Qianjin, Xu Ning, Cui Hang, et al. Effect of adding cone to mitigate ice-induced vibration[J]. The Ocean Engineering, 2011, 29(2):18-24. (in Chinese)
[3] Yue Q, Zhang L, Zhang W, et al. Mitigating ice-induced jacket platform vibrations utilizing a TMD system[J]. Cold Regions Science & Technology, 2009, 56(2/3):84-89.
[4] 岳前进, 刘圆, 屈衍, 等. 抗冰平台的冰振疲劳分析[J]. 工程力学, 2007, 24(6):159-164. Yue Qianjin, Liu Yuan, Qu Yan, et al. Fatigue-life analysis of ice-resistant platforms[J]. Engineering Mechanics, 2007, 24(6):159-164. (in Chinese)
[5] 岳前进, 毕祥军, 于晓, 等. 锥体结构的冰激振动与冰力函数[J]. 土木工程学报, 2003, 36(2):17-19. Yue Qianjin, Bi Xiangjun, Yu Xiao, et al. Ice-induced vibration and ice force function of conical structure[J]. China Civil Engineering Journal, 2003, 36(2):17-19. (in Chinese)
[6] Huang Y, Ma J, Tian Y. Model tests of four-legged jacket platforms in ice:Part 1. Model tests and results[J]. Cold Regions Science & Technology, 2013, 95(11):74-85.
[7] 高良田, 王键伟, 王庆, 等. 破冰船在层冰中运动的数值模拟方法[J]. 工程力学, 2019, 36(1):227-238. Gao Liangtian, Wang Jianwei, Wang Qing, et al. Numerical simulation method for motion of the icebreaker in level ice[J]. Engineering Mechanics, 2019, 36(1):227-238. (in Chinese)
[8] 季顺迎, 狄少丞, 李正, 等. 海冰与直立结构相互作用的离散单元数值模拟[J]. 工程力学, 2013, 30(1):463-469. Ji Shunying, Di Shaocheng, Li Zheng, et al. Discrete element modelling of interaction between sea ice and vertical offshore structures[J]. Engineering Mechanics, 2013, 30(1):463-469. (in Chinese)
[9] 武文华, 于佰杰, 许宁, 等. 海冰与锥体抗冰结构动力作用的数值模拟[J]. 工程力学, 2008, 25(11):192-196. Wu Wenhua, Yu Baijie, Xu Ning, et al. Numerical simulation of dynamic ice action on conical structure[J]. Engineering Mechanics, 2008, 25(11):192-196. (in Chinese)
[10] Sand B, Fransson L. Nonlinear finite element simulations of ice sheet forces on conical structures[C]//Proc. 25th Int. Conf. on Offshore and Arctic Engineering (OMAE), Hamburg, Germany, 2006.
[11] 周先齐, 徐卫亚, 钮新强, 等. 离散单元法研究进展及应用综述[J]. 岩土力学, 2007(增刊1):408-416. Zhou Xianqi, Xu Weiya, Niu Xinqiang, et al. A review of distinct element method researching progress and application. Rock and Soil Mechanics, 2007(Suppl1):408-416. (in Chinese)
[12] Hopkins M A. Onshore ice pile-up:a comparison between experiments and simulations[J]. Cold Regions Science & Technology, 1997, 26(3):205-214.
[13] Polojärvi A, Tuhkuri J, Pustogvar A. DEM simulations of direct shear box experiments of ice rubble:force chains and peak loads[J]. Cold Regions Science and Technology, 2015, 116:12-23.
[14] Ji S, Di S, Liu S. Analysis of ice load on conical structure with discrete element method[J]. Engineering Computations, 2015, 32(4):1121-1134.
[15] Munjiza A, Lei Z, Divic V, et al. Fracture and fragmentation of thin shells using the combined finite-discrete element method[J]. International Journal for Numerical Methods in Engineering, 2013, 95:479-498.
[16] Chung Y C, Lin C K, Chou P H, et al. Mechanical behavior of a granular of a granular solid and its contacting deformable structure under uni-axial compression-Part1:Joint DEM-FEM modelling and experimental validation[J]. Chemical Engineering Science, 2016, 144:404-420.
[17] Zheng Z M, Zang M Y, Chen H Y, et al. A GPU-based DEM-FEM computational framework for tire-sand interaction simulations[J]. Computers and Structures, 2018, 209(15):74-92.
[18] Michael M, Vogel F, Peters B. DEM-FEM coupling simulations of the interactions between a tire tread and granular terrain[J]. Computer Methods in Applied Mechanics & Engineering, 2015, 289(47):227-248.
[19] Shao S, Yan Y, Ji S. Combined Discrete-Finite element modeling of ballasted railway track under cyclic loading[J].International Journal of Computational Methods, 2016, 14(5):1750047.
[20] 肖军华, 张德, 王延海, 等. 基于DEM-FDM耦合的普通铁路碎石道床-土质基床界面接触应力分析[J]. 工程力学, 2018, 35(9):170-179. Xiao Junhua, Zhang De, Wang Yanhai, et al. Study on interface stress between ballast and subgrade for traditional railway based on coupled DEM-FDM[J]. Engineering Mechanics, 2018, 35(9):170-179. (in Chinese)
[21] 邱长林, 王菁, 闫澍旺. 冲击荷载作用下有碎石保护结构的海底管线DEM-FEM联合分析研究[J]. 岩土工程学报, 2015, 37(11):2089-2093. Qiu Changlin, Wang Jing, Yan Shuwang. Coupled DEM-FEM analysis of structure pipelines with rock armor berm under impact load[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11):2089-2093. (in Chinese)
[22] Dratt M, Katterfeld A. Coupling of FEM and DEM simulations to consider dynamic deformations under particle load[J]. Granular Matter, 2017, 19(3):49.
[23] Ji S, Di S, Long X. DEM simulation of uniaxial compressive and flexural strength of sea ice:parametric study[J]. Journal of Engineering Mechanics, 2016, 143(1):C4016010. (in Chinese)
[24] 季顺迎, 顾纵棋, 王安良, 等. 基于海洋油气平台上雷达连续监测的海冰漂移特性分析[J]. 海洋通报, 2016, 35(3):280-285. Ji S, Gu Z, Wang A, et al. Analysis of drifting characteristics of the sea ice based on continuous marine radar monitoring on the oil-gas offshore platform[J]. Marine Science Bulletin, 2016, 35(3):280-285. (in Chinese)
[25] Michel B, Toussaint N. Mechanisms and theory of indentation of ice plates[J]. Journal of Glaciology, 1977, 19(81):285-300.
[26] Oñate E, Rojek J. Combination of discrete element and finite element methods for dynamic analysis of geomechanics problems[J]. Computer Methods in Applied Mechanics & Engineering, 2004, 193(27):3087-3128.
[27] Ji S, Wang A, Su J, et al. Experimental studies on elastic modulus and flexural strength of sea ice in the Bohai Sea[J]. Journal of Cold Regions Engineering, 2011, 25(4):182-195.
[28] Frankenstein G, Garner R. Equations for determining the brine volume sea ice from -0.5℃ to -22.9℃[J]. Journal of Glaciology, 1967, 6(48):943-944.
[29] Long Y, Xu Y. Generalized conforming quadrilateral membrane element with vertex rigid rotational freedom[J]. Computers & Structures, 1994, 52(4):749-755.
[30] 岑松, 龙志飞. 对转角场和剪应变场进行合理插值的厚板元[J]. 工程力学, 1998, 15(3):1-14. Cen Song, Long Zhifei. A Mindlin triangular plate element with improved interpolation for the rotation and shear strain fields[J]. Engineering Mechanics, 1998, 15(3):1-14. (in Chinese)
[31] Nishiura D, Sakaguchi H. Parallel-vector algorithms for particle simulations on shared-memory multiprocessors[J]. Journal of Computational Physics, 2011, 230:1923-1938.
[32] Qu Y, Yue Q, Bi X, et al. A random ice force model for narrow conical structures[J]. Cold Regions Science and Technology, 2006, 45(3):148-157.
[33] Timco G W, Weeks W F. A review of engineering properties of sea ice[J]. Cold Regions Science and Technology, 2010, 60:107-129.
[34] Huang Y. Model test study of the nonsimultaneous failure of ice before wide conical structures[J]. Cold Regions Science & Technology, 2010, 63(3):87-96.
[35] Ralston T D. Plastic limit analysis of sheet ice loads structure[C]//IUTAM Symposium on Physics and Mechanics of Ice, 1980:289-308.
[36] Kato K. Simulation of ice load on a conical shaped structure:comparison with experimental results[C]//Proc of the 7th International Offshore and Polar Conference, 1997:360-367.
[37] Yue Q J, Qu Y, Bi X J, et al. Ice force spectrum on narrow conical structures[J]. Cold Regions Science and Technology, 2007, 49:161-169.
[38] Hirayama K, Obara I. Ice forces on inclined structure[C]//Proc of the 5th International Offshore Mechanics and Arctic Engineering, 1986:515-520.
[1] 曹胜涛, 李志山, 刘付钧, 黄忠海. 基于Bouc-Wen模型的消能减震结构显式非线性时程分析[J]. 工程力学, 2019, 36(S1): 17-24.
[2] 曹胜涛, 路德春, 杜修力, 赵密, 程星磊. 基于GPU并行计算的地下结构非线性动力分析软件平台开发[J]. 工程力学, 2019, 36(2): 53-65,86.
[3] 高良田, 王键伟, 王庆, 贾宾, 王永魁, 石莉. 破冰船在层冰中运动的数值模拟方法[J]. 工程力学, 2019, 36(1): 227-237.
[4] 曹胜涛, 李志山, 刘付钧. 一种非比例振型阻尼模型及在大规模非线性分析中的应用[J]. 工程力学, 2018, 35(11): 162-171.
[5] 岳前进;刘 圆;屈 衍;时忠民. 抗冰平台的冰振疲劳分析[J]. 工程力学, 2007, 24(6): 0-164.
[6] 李辉;丁桦;郑哲敏. 基于局部密集应变响应的海洋平台冰载荷反演方法[J]. 工程力学, 2006, 23(7): 185-192.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周小平;杨海清;张永兴. 有限宽偏心裂纹板在裂纹面受两对集中拉力作用时裂纹线的弹塑性解析解[J]. 工程力学, 2008, 25(1): 0 -027 .
[2] 张冬娟;崔振山;李玉强;阮雪榆. 平面应变板料拉弯成形回弹理论分析[J]. 工程力学, 2007, 24(7): 0 -071 .
[3] 张伯艳;陈厚群. LDDA动接触力的迭代算法[J]. 工程力学, 2007, 24(6): 0 -006 .
[4] 陈有亮;邵伟;周有成. 水饱和混凝土单轴压缩弹塑性损伤本构模型[J]. 工程力学, 2011, 28(11): 59 -063, .
[5] 吴方伯;黄海林;陈伟;周绪红;. 肋上开孔对预制预应力混凝土带肋薄板施工阶段挠度计算方法的影响研究[J]. 工程力学, 2011, 28(11): 64 -071 .
[6] 李宗利;杜守来. 高渗透孔隙水压对混凝土力学性能的影响试验研究[J]. 工程力学, 2011, 28(11): 72 -077 .
[7] 王坤;谢康和;李传勋;童磊. 特殊条件下考虑起始比降的双层地基一维固结解析解[J]. 工程力学, 2011, 28(11): 78 -082 .
[8] 姜亚洲;任青文;吴晶;杜小凯. 基于双重非线性的混凝土坝极限承载力研究[J]. 工程力学, 2011, 28(11): 83 -088 .
[9] 吴明;彭建兵;徐平;孙苗苗;夏唐代. 考虑土拱效应的挡墙后土压力研究[J]. 工程力学, 2011, 28(11): 89 -095 .
[10] 陆本燕;刘伯权;邢国华;吴涛. 桥梁结构基于性能的抗震设防目标与性能指标研究[J]. 工程力学, 2011, 28(11): 96 -103, .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日