工程力学 ›› 2019, Vol. 36 ›› Issue (10): 152-163.doi: 10.6052/j.issn.1000-4750.2018.10.0559

• 土木工程学科 • 上一篇    下一篇

碎石桩加固可液化场地数值模拟与分析

邹佑学1,2,3, 王睿1,2,3, 张建民1,2,3   

  1. 1. 清华大学水沙科学与水利水电工程国家重点试验室, 北京 100084;
    2. 城市轨道交通绿色与安全建造技术国家工程试验室, 北京 100084;
    3. 清华大学土木水利学院, 北京 100084
  • 收稿日期:2018-10-19 修回日期:2019-01-21 出版日期:2019-10-25 发布日期:2019-03-21
  • 通讯作者: 张建民(1960-),男,陕西人,教授,博士,博导,主要从事岩土工程方面的教学和研究工作(E-mail:zhangjm@tsinghua.edu.cn). E-mail:zhangjm@tsinghua.edu.cn
  • 作者简介:邹佑学(1974-),男,湖北人,博士生,主要从事岩土工程抗震方面的研究(E-mail:zouyx09@mails.tsinghua.edu.cn);王睿(1987-),男,陕西人,博士,主要从事岩土工程抗震方面的研究(E-mail:wangrui_05@mails.tsinghua.edu.cn).
  • 基金资助:
    国家自然科学基金项目(51678346,51708332)

NUMERICAL INVESTIGATION ON LIQUEFACTION MITIGATION OF LIQUEFIABLE SOIL IMPROVED BY STONE COLUMNS

ZOU You-xue1,2,3, WANG Rui1,2,3, ZHANG Jian-min1,2,3   

  1. 1. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China;
    2. National Engineering Laboratory for Urban Rail Transit Green and Safety Construction Technology, Beijing 100084, China;
    3. School of Civil Engineering, Tsinghua University, Beijing 100084, China
  • Received:2018-10-19 Revised:2019-01-21 Online:2019-10-25 Published:2019-03-21

摘要: 采用砂土液化大变形模型模拟饱和砂土及等效非线性增量模型模拟碎石桩,对碎石桩加固约19 m厚饱和砂土场地的动力离心模型试验进行数值模拟,在加固区与非加固区不同部位的加速度和超静孔隙水压响应时程与试验数据符合较好。在试验验证的基础上,对不同震动强度下碎石桩的排水与加密效应对加固可液化场地的动力响应影响进行了模拟研究,包括:超静孔压累积与消散,土体液化变形的发展,及加固区内部与外部响应差异等。结果表明:碎石桩加固可明显改善土体抗液化能力,在所分析的0.2 g震动强度工况,碎石桩加固区除桩间土浅层1 m~2 m少量部位外未出现土体液化,基本达到加固消除液化的目的。碎石桩抗液化的有效影响范围约为2.5倍~3倍桩径,在浅层小而随深度增加;外围桩发挥着加固区排水屏障和非加固区排水通道的作用;碎石桩加固加密土体时,会提高土体的剪应力比峰值。

关键词: 动力响应, 可液化场地, 碎石桩, 复合地基, 数值模拟, 动力离心模型试验

Abstract: Using a plasticity model for large post-liquefaction deformation of sand for liquefiable soil and an equivalent nonlinear incremental model for stone columns (SC), a centrifuge model test with a SC improved 19m liquefiable sand layer is simulated. The time histories of acceleration and excess pore water pressure (EPWP) at various locations both within and outside the improved area agreed with the experimental data. Upon validation, analysis is conducted on the densification and drainage effects of SC on the dynamic response of the improved ground under various shaking intensities. The build-up and dissipation process EPWP of the deformation process from small pre-liquefaction deformation to large post-liquefaction deformation, and the different response within and outside the improved areas are investigated. The results show that the installation of SCs can mitigate earthquake-induced liquefaction in saturated sand. For the case of 0.2 g shaking intensity in this study, no substantial liquefaction is observed in the SC improved area except small portions near the ground surface. The effective influence area of each column is about 2.5~3 times its diameter. For a group of SCs, the periphery SCs act as drainage barrier for the improved area and drainage path for the unimproved free field. Densification of soil due to SC installation increases the peak value of shear stress ratio in the soil.

Key words: dynamic response, liquefiable soil, stone columns, composite foundation, numerical simulation, dynamic centrifuge model test

中图分类号: 

  • TU435
[1] Seed R B, Cetin, K O, Moss R, et al. Recent advances in soil liquefaction engineering and seismic site response evaluation[C]//Shamsher Prakash, Proceedings of 4th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, San Diego:University of Missouri-Rolla, 2001(SPL-2):1-45.
[2] Seed H B, Booker J R. Stabilization of potentially liquefiable sand deposits using gravel drains[J]. ASCE Journal of Geotechnical Engineering Division, 1977, 107(7):757-768.
[3] Adalier K, Elgamal A. Mitigation of liquefaction and associated ground deformation by stone columns[J]. Engineering Geology, 2004, 72(2004):275-291.
[4] Hausler E A. Influence of ground improvement on settlement and liquefaction:a study based on field case history evidence and dynamic geotechnical centrifuge tests[D]. Berkeley:University of California, 2002.
[5] Brennan A J. Vertical drains as a countermeasure to earthquake-induced soil liquefaction[D]. UK:University of Cambridge, 2004.
[6] Adalier K. Elgamal A, Meneses J, Baez J I. Stone columns as liquefaction countermeasure in non-plastic silty soils[J]. Soil Dynamics and Earthquake Engineering, 2003, 23(7):571-584
[7] Badanagki M, Dashti S, Kirkwood P. Influence of dense granular columns on the performance of level and gently sloping liquefiable sites[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(9):04018065-1-04018065-14.
[8] Papadimitriou A, Moutsopoulou M E, Bouckovalas G, Brennan A. Numerical investigation of liquefacton mitigation using gravel drain[C]//Kyriazis Pitilakis, Proceedings of 4th International Conference on Earthquake Geotechnical Engineering, Thessaloniki, Greece:International Society of Soil Mechanics and Geotechnical Engineering, 2007(paper No. 1548):1-12.
[9] Li P, Dahti S, Badanagki M, Kirkwood P. Evaluating 2D numerical simulations of granular columns in level and gently sloping liquefiable sites using centrifuge experiments[J]. Soil Dynamics and Earthquake Engineering, 2018, 110(2018):232-243.
[10] Tang L, Zhang XY, Liang XZ. Numerical Simulation of centrifuge experiments on liquefaction mitigation of silty soils using stone columns[J]. KSCE Journal of Civil Engineering, 2016, 20(2):631-638.
[11] Rayamajhi D, Nguyen T V, Scott A A, et al. Numerical study of shear stress distribution for discrete columns in liquefiable soils[J]. ASCE Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(3):1-9.
[12] 牛琪瑛, 郭英, 吴永娟, 等. 碎石桩加固不同密实度液化土的孔隙水压力变化规律探讨[J]. 工程力学, 2010, 27(增刊I):159-163. Niu Qiying, Guo Ying, Wu Yongjuan, et al. Study on pore water pressure variation of different density liquefiable sand soil reinforced by gravel pile[J]. Enigineering Mechanics, 2010, 27(Suppl I):159-163. (in Chinese)
[13] 邹佑学, 王睿, 张建民. 可液化场地碎石桩复合地基地震动力响应分析[J]. 岩土力学, 2019, 40(6):2043-2055. Zou Youxue, Wang Rui, Zhang Jianmin. Analysis for the seismic response of stone columns composite foundation in liquefiable soils[J]. Rock and Soil Mechanics, 2019, 40(6):2043-2055. (in Chinese)
[14] 张建民. 砂土动力学若干基本理论探究[J]. 岩土工程学报, 2012, 34(1):1-50. Zhang Jianmin. New advances in basic theories of sand dynamics[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1):1-50. (in Chinese)
[15] 张建民. 砂土的可逆性和不可逆性剪胀规律[J]. 岩土工程学报, 2000, 22(1):12-17. Zhang Jianmin. Reversible and irreversible dilatancy of sand[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(1):12-17. (in Chinese)
[16] 张建民, 王刚. 砂土液化大变形的机理[J]. 岩土工程学报, 2006, 28(7):835-840. Zhang Jianmin, Wang Gang. Mechanism of large post-liquefaction deformation in saturated sand[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(7):835-840. (in Chinese)
[17] Zhang J M, Wang G. Large post-liquefaction deformation of sand, part I:physical mechanism, constitutive description and numerical algorithm[J]. Acta Geotechnica, 2012, 7(2):69-113.
[18] Wang Rui, Min Jian Zhang, Wang Gang. A unified plasticity model for large post-liquefaction shear deformation of sand[J]. Computers and Geotechnics, 2014, 59(2014):54-66.
[19] 邹佑学, 王睿, 张建民. 砂土液化大变形模型在FLAC3D中的开发与应用[J]. 岩土力学, 2018, 39(4):1525-1534. Zou Youxue, Wang Rui, Zhang Jianmin. Implementing a plasticity model for large post-liquefaction deformation of sand into the FLAC3D program[J]. Rock and Soil Mechanics, 2018, 39(4):1525-1534. (in Chinese)
[20] Wang R. Single Piles in Liquefiable Ground:Seismic response and numerical analysis methods[M]. Berlin:Springer, 2016.
[21] Wang R, Fu P, Zhang JM. Finite Element model for piles in liquefiable ground[J]. Computers and Geotechnics, 2016, 72:1-14.
[22] 王睿, 张建民. 可液化地基中单桩基础的三维数值分析方法及应用[J]. 岩土工程学报, 2015, 37(11):1979-1985. Wang Rui, Zhang Jianmin. Three-dimensional elastic-plastic analysis method for piles in liquefiable ground[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11):1979-1985. (in Chinese)
[23] 刘星, 王睿, 张建民. 液化地基中群桩基础地震相应分析[J]. 岩土工程学报, 2015, 37(12):2326-2331. Liu Xing, Wang Rui, Zhang Jianmin. Seismic response analysis of pile groups in liquefiable foundations[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12):2326-2331.
[24] Wang R, Liu X, Zhang J M. Numerical analysis of the seismic inertial and kinematic effects on pile bending moment in liquefiable soils[J]. Acta Geotechnica. 2017, 12(4):773-791.
[25] Seed H B, Robert T W, Idriss I M, et al. Moduli and damping factors for dynamic analyses of cohesionless doils[J]. Journal of Geotechnical Engineering(ASCE), 1986, 112(11):1016-1032.
[26] Rollins K M, Evans M D, Diehl N B, et al. Shear modulus and damping relationships for gravels[J]. Journal of Geotechnical Engineering(ASCE), 1998, 124(5):396-405.
[27] Itasca Consulting Group Inc.. Fast Language Analysis of continua in 3 dimensions, version 5.0, user's manual. Itasca Consulting Group Inc., 2012.
[1] 焦驰宇, 马银强, 刘陆宇, 龙佩恒, 侯苏伟. FPS支座双向加载拟静力试验与数值模拟研究[J]. 工程力学, 2019, 36(S1): 86-91.
[2] 陈恒, 肖映雄, 郭瑞奇. 基于p型自适应有限元法的混凝土骨料模型数值模拟[J]. 工程力学, 2019, 36(S1): 158-164.
[3] 程麦理. 黄土场地桩基横向力学行为数值模拟[J]. 工程力学, 2019, 36(S1): 229-233.
[4] 王钰, 纪巧玲, 刘庆凯. 规则波作用下导桩锚泊的浮防波堤水动力特性的数值模拟[J]. 工程力学, 2019, 36(S1): 268-271,284.
[5] 徐世烺, 陈超, 李庆华, 赵昕. 超高韧性水泥基复合材料动态压缩力学性能的数值模拟研究[J]. 工程力学, 2019, 36(9): 50-59.
[6] 宋二祥, 仝睿, 罗爽, 李鹏. 路基土体“时变覆盖效应”的数值模拟分析[J]. 工程力学, 2019, 36(8): 30-39.
[7] 杜永峰, 时晨. 多向动力耦合激励下隔震结构连续倒塌性能分析[J]. 工程力学, 2019, 36(6): 248-256.
[8] 曾磊, 谢炜, 郑山锁, 陈熠光, 任雯婷. T形配钢型钢混凝土柱-钢梁框架抗震性能研究[J]. 工程力学, 2019, 36(5): 157-165.
[9] 种迅, 张蓝方, 万金亮, 王德才, 叶献国, 解琳琳, 邵徽斌. 两层带开洞预制剪力墙抗震性能试验研究与数值模拟分析[J]. 工程力学, 2019, 36(5): 176-183.
[10] 郑文智, 王浩, 沈惠军. 强震下隔震连续梁桥地震响应的温度效应研究[J]. 工程力学, 2019, 36(4): 188-195,205.
[11] 朱志辉, 张磊, 龚威, 罗思慧, 姚京川, 余志武. 基于模态叠加法和直接刚度法的列车-轨道-桥梁耦合系统高效动力分析混合算法[J]. 工程力学, 2019, 36(4): 196-205.
[12] 陈云, 蒋欢军, 刘涛, 万志威, 鲁正. 分级屈服型金属阻尼器抗震性能研究[J]. 工程力学, 2019, 36(3): 53-62.
[13] 钟紫蓝, 王书锐, 杜修力, 李立云, 侯本伟. 管道承插式接口轴向力学性能试验研究与数值模拟[J]. 工程力学, 2019, 36(3): 224-230,239.
[14] 朱建阳, 张加诚, 王钊. 仿生翼型对半主动扑翼捕能性能的影响[J]. 工程力学, 2019, 36(10): 223-228,237.
[15] 高良田, 王键伟, 王庆, 贾宾, 王永魁, 石莉. 破冰船在层冰中运动的数值模拟方法[J]. 工程力学, 2019, 36(1): 227-237.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张冬娟;崔振山;李玉强;阮雪榆. 平面应变板料拉弯成形回弹理论分析[J]. 工程力学, 2007, 24(7): 0 -071 .
[2] 何浩祥;闫维明;陈彦江. 地震动加加速度反应谱的概念及特性研究[J]. 工程力学, 2011, 28(11): 124 -129 .
[3] 史姣;王正中;蔡坤. 张量分析中简化记法在公式推导中的应用及张量分量的计算[J]. 工程力学, 2006, 23(10): 45 -48 .
[4] 何 涛;李子然;汪 洋. 子午线轮胎胎面花纹块滑动磨损有限元分析[J]. 工程力学, 2010, 27(7): 237 -243, .
[5] 段红霞;李守巨;刘迎曦. 地震作用下钢结构损伤过程数值模拟[J]. 工程力学, 2011, 28(2): 198 -204 .
[6] 赵 洁;聂建国. 钢板-混凝土组合梁的非线性有限元分析[J]. 工程力学, 2009, 26(4): 105 -112 .
[7] 龚科家;危银涛;叶进雄. 填充橡胶超弹性本构参数试验与应用[J]. 工程力学, 2009, 26(6): 193 -198 .
[8] 葛耀君. 大跨度桥梁抗风的技术挑战与精细化研究[J]. 工程力学, 2011, 28(增刊Ⅱ): 11 -23 .
[9] 肖诗云;林皋;王哲. Drucker-Prager材料一致率型本构模型[J]. 工程力学, 2003, 20(4): 147 -151 .
[10] 吴鹰飞;周兆英. 柔性铰链的设计计算[J]. 工程力学, 2002, 19(6): 136 -140 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日