工程力学 ›› 2019, Vol. 36 ›› Issue (10): 134-143.doi: 10.6052/j.issn.1000-4750.2018.10.0546

• 土木工程学科 • 上一篇    下一篇

考虑位置函数的木材表面嵌筋粘结滑移本构关系

阿斯哈, 周长东, 邱意坤, 梁立灿, 张泳   

  1. 北京交通大学土木建筑工程学院, 北京 100044
  • 收稿日期:2018-10-17 修回日期:2019-01-27 出版日期:2019-10-25 发布日期:2019-03-21
  • 通讯作者: 周长东(1971-),男,山东人,教授,博士,主要从事结构鉴定加固及抗震方面研究(E-mail:zhouchangdong@163.com). E-mail:zhouchangdong@163.com
  • 作者简介:阿斯哈(1992-),男(蒙古族),内蒙古人,博士生,主要从事木结构加固研究(E-mail:asiha333@163.com);邱意坤(1991-),男,湖北人,博士生,主要从事工程结构抗震方面研究(E-mail:16115321@bjtu.edu.cn);梁立灿(1992-),男,河北人,硕士生,主要从事木结构加固研究(E-mail:16121047@bjtu.edu.cn);张泳(1994-),男,河北人,硕士生,主要从事工程结构抗震方面研究(E-mail:16121159@bjtu.edu.cn).
  • 基金资助:
    国家自然科学基金面上项目(51678039,51478033)

BOND-SLIP LAW BETWEEN TIMBER AND NEAR SURFACE MOUNTED REBAR CONSIDERING LOCATION FUNCTION

A Si-ha, ZHOU Chang-dong, QIU Yi-kun, LIANG Li-can, ZHANG Yong   

  1. School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, China
  • Received:2018-10-17 Revised:2019-01-27 Online:2019-10-25 Published:2019-03-21

摘要: 木材表面嵌筋加固是提升木结构构件力学性能的有效加固方法,木材与筋材之间良好的协同工作性能是保证其加固效果的基础,内嵌筋材与木材的粘结滑移本构关系是理论计算与有限元分析的重要依据。该文基于6组18个原木木材表面内嵌钢筋试件的拔出试验结果,首先分析计算试验中量测得到的钢筋应变以及钢筋相对于试件端部的滑移值,得到了局部粘结应力和相对滑移量沿锚固长度的分布曲线,由其分布规律可知局部粘结应力呈双峰状分布,相对滑移量分布与锚固长度相关;进而分析了不同位置处的粘结滑移曲线以及同一滑移值下的粘结应力分布曲线,可知不同应变测点处的粘结滑移曲线分布规律不同;之后采用归一化的方法给出了描述粘结滑移关系的位置函数,并讨论了钢筋直径以及锚固长度对位置函数分布的影响;最后建立了考虑位置函数的木材表面嵌筋粘结滑移本构关系。

关键词: 表面嵌筋, 木材, 粘结滑移本构关系, 拔出试验, 位置函数, 粘结应力

Abstract: The mechanical properties of timber structure components can be improved significantly with the near surface mounted technique, and the strengthening effects depend on the collaborative working performance between timber and rebars. The bond-slip constitutive relationship is the necessary basis for the theory calculation and finite element analysis. On the basis of the pull-out test results of 18 timber specimens (6 groups) with near surface mounted rebars, the distribution of the local bond stress and local relative slip-displacement along the anchorage length of steel rebars were obtained by analyzing and calculating the experimentally measured strain of steel bars and the relative-slip values of steel rebars to the end of specimens. The distribution law of local bond stress indicates that it is bimodal and the local relative slip-displacement curves are related to anchorage length. Further, the local bond-slip curves, the distribution of which varies along the measurement position and the bond stress distribution curves under the same slip value are analyzed. Then, a location function describing the bond-slip relationship is derived by the normalization method, and the influences of diameter and anchorage length of steel rebars on the distribution of the location function are discussed. Finally, the bond-slip law between timber and near surface mounted steel rebar considering the location function is constructed.

Key words: near surface mounted steel rebar, timber, bond-slip relationship, pull-out test, location function, bond stress

中图分类号: 

  • TU366.2
[1] 朱雷, 许清风. CFRP加固木柱性能的试验研究[J]. 工业建筑, 2008, 38(12):113-116. Zhu Lei, Xu Qingfeng. Experimental research on behavior of CFRP-reinforced timber column[J]. Industrial Construction, 2008, 38(12):113-116. (in Chinese)
[2] 淳庆, 张洋, 潘建伍. 内嵌碳纤维板加固圆木柱轴心抗压性能试验研究[J]. 工业建筑, 2013, 43(7):91-95. Chun Qing, Zhang Yang, Pan Jianwu. Experimental study on mechanical properties of circular timber columns strengthened with near-surface mounted CFRP sheets under axial compression[J]. Industrial Construction, 2013, 43(7):91-95. (in Chinese)
[3] Caro M, Jemaa Y, et al. Bond performance of deep embedment FRP bars epoxy-bonded into concrete[J]. Engineering Structures, 2017, 147:448-457.
[4] 王博, 白国良, 代慧娟, 等. 再生混凝土与钢筋粘结滑移性能的试验研究及力学分析[J]. 工程力学, 2013, 30(10):54-64. Wang Bo, Bai Guoliang, Dai Huijuan, et al. Experimental and mechanical analysis of bond-slip performance between recycled concrete and rebar[J]. Engineering Mechanics, 2013, 30(10):54-64. (in Chinese)
[5] 郑建岚, 庄金平. 自密实混凝土与钢筋的粘结性能试验研究[J]. 工程力学, 2013, 30(2):112-117. Zheng Jianlan, Zhuang Jinping. Experimental research on bond properties between self-compacting concrete and reinforcement[J]. Engineering Mechanics, 2013, 30(2):112-117. (in Chinese)
[6] 杨超, 杨树桐, 戚德海. BFRP筋与珊瑚混凝土粘结性能试验研究[J]. 工程力学, 2018, 35(增刊1):172-180. Yang Chao, Yang Shutong, Qi Dehai. Experimental study on the bond performance between BFRP bars and coral concrete[J]. Engineering Mechanics, 2018, 35(Suppl1):178-180. (in Chinese)
[7] 赵羽习, 金伟良. 钢筋与混凝土粘结本构关系的试验研究[J]. 建筑结构学报, 2002, 23(1):32-37. Zhao Yuxi, Jin Weiliang. Test study on bond stress-slip relationship of concrete and steel bar[J]. Journal of Building Structures, 2002, 23(1):32-37. (in Chinese)
[8] 张伟平, 张誉. 锈胀开裂后钢筋混凝土粘结滑移本构关系研究[J]. 土木工程学报, 2001, 34(5):40-44. Zhang Weiping, Zhang Yu. Bond-slip relationship between corroded steel bars and concrete[J]. Journal of Civil Engineering, 2001, 34(5):40-44. (in Chinese)
[9] 山显彬. 变形钢筋与自密实混凝土之间粘结锚固性能试验研究[D]. 哈尔滨:哈尔滨工业大学, 2008. Shan Xianbin. Experimental research on bonding properties between deformed bars and self-compacting concrete[D]. Harbin:Harbin Institute of Technology, 2008. (in Chinese)
[10] Steiger R, Serrano E, Stepinac M, et al. Strengthening of timber structures with glued-in rods[J]. Construction & Building Materials, 2015, 97:90-105.
[11] Zhu H, Faghani P, Tannert T. Experimental investigations on timber joints with single glued-in FRP rods[J]. Construction and Building Materials, 2017, 140(Complete):167-172.
[12] Chans D O, Cimadevila J E, Gutiérrez E M. Influence of the geometric and material characteristics on the strength of glued joints made in chestnut timber[J]. Materials & Design, 2009, 30(4):1325-1332.
[13] Yeboah D, Taylor S, Mcpolin D, et al. Pull-out behaviour of axially loaded Basalt Fibre Reinforced Polymer (BFRP) rods bonded perpendicular to the grain of glulam elements[J]. Construction & Building Materials, 2013, 38(5):962-969.
[14] 凌志彬, 刘伟庆, 杨会峰, 等. 考虑位置函数的胶合木植筋粘结-滑移关系研究[J]. 工程力学, 2016, 33(3):95-103. Ling Zhibin, Liu Weiqing, Yang Huifeng, et al. Study on bond-Slip law of glulam connection with glued-in rebar with consideration of location function[J]. Engineering Mechanics, 2016, 33(3):95-103. (in Chinese)
[15] Ling Z, Liu W, Lam F, et al. Bond behavior between softwood glulam and epoxy bonded-in threaded steel rod[J]. Journal of Materials in Civil Engineering, 2016, 28(3):06015011.
[16] 张富文, 许清风, 李向民, 等. 内嵌CFRP筋与木材的粘结锚固性能试验研究[J]. 结构工程师, 2014, 30(5):146-153. Zhang Fuwen, Xu Qingfeng, Li Xiangmin, et al. Experimental research on nsm CFRP bar-to-wood bond behaviour[J]. Structural Engineers, 2014, 30(5):146-153. (in Chinese)
[17] Righetti L, Corradi M, Borri A. Analytical study on bond behavior of CFRP bars epoxied into timber elements[C]. Wroclaw:Structural Health Assessment of Timber Structures, 2015. ISSN 0860-2395, ISBN 978-83-255-6.
[18] Sena-Cruz J, Branco J, Jorge M, et al. Bond behavior between glulam and GFRP's by pullout tests[J]. Composites Part B, 2012, 43(3):1045-1055.
[19] 徐世烺, 王洪昌. 超高韧性水泥基复合材料与钢筋粘结本构关系的试验研究[J]. 工程力学, 2008, 25(11):53-61. Xu Shilang, Wang Hongchang. Experimental study on bond-slip between ultra high toughness cementitious composites and steel bar[J]. Engineering Mechanics, 2008, 25(11):53-61. (in Chinese)
[20] 洪小健, 张誉. 粘结滑移试验中的粘结应力的拟合方法[J]. 结构工程师, 2000, 15(3):44-48. Hong Xiaojian, Zhang Yu. The fitting method of the smooth bond stress in the bond-slip test[J]. Structural Engineers, 2000, 15(3):44-48. (in Chinese)
[21] Ling Z, Yang H, Liu W, et al. Local bond stress-slip relationships between glue laminated timber and epoxy bonded-in GFRP rod[J]. Construction & Building Materials, 2018, 170:1-12.
[22] 张海霞, 何禄源. 基于ABAQUS的表面内嵌CFRP筋粘结滑移性能数值模拟分析[J]. 工程力学, 2014, 31(增刊1):239-244. Zhang Haixia, He Luyuan. Numerical simulation analysis on bond-slip behavior of concrete strengthened with near-surface mounted CFRP bars based on ABAQUS[J]. Engineering Mechanics, 2014, 31(Suppl1):239-244. (in Chinese)
[1] 陈俊, 张白, 杨鸥, 蒋恩浩. 微锈蚀钢筋混凝土高温后粘结锚固性能试验研究[J]. 工程力学, 2018, 35(10): 92-100.
[2] 赵卫平, 朱彬荣. 高温后HSC粘结滑移基础参数测量与3D有限元数值模拟[J]. 工程力学, 2017, 34(4): 177-186.
[3] 张宸赫, 廖红建, 钱春宇, 李杭州, 宋丽, 郑建国. 古建筑木材料拉-压疲劳试验研究[J]. 工程力学, 2016, 33(增刊): 201-206.
[4] 凌志彬, 刘伟庆, 杨会峰, 陆伟东. 考虑位置函数的胶合木植筋粘结-滑移关系研究[J]. 工程力学, 2016, 33(3): 95-103.
[5] 李俊华,邱栋梁,俞凯,孙彬. 高温后型钢混凝土粘结滑移性能研究[J]. 工程力学, 2015, 32(2): 190-200,206.
[6] 杨海峰,邓志恒,覃英宏. 钢筋锈蚀后与再生混凝土间粘结-滑移本构关系研究[J]. 工程力学, 2015, 32(10): 114-122.
[7] 蒋德稳,邱洪兴. 重复荷载下钢筋与混凝土粘结本构关系[J]. 工程力学, 2012, 29(5): 93-100.
[8] 郭子雄;刘宝成;刘 阳. 石材表层嵌埋CFRP筋粘结性能试验研究[J]. 工程力学, 2011, 28(7): 59-064.
[9] 李 杉;任慧韬;黄承逵;崔云飞. FRP(纤维增强聚合物)片材单面搭接性能分析[J]. 工程力学, 2009, 26(8): 251-256.
[10] 李俊华;薛建阳;王新堂;赵鸿铁. 反复荷载下型钢混凝土柱粘结滑移性能试验研究[J]. 工程力学, 2009, 26(4): 98-104.
[11] 康希良;程耀芳;张 丽;赵鸿铁. 钢管混凝土粘结-滑移本构关系理论分析[J]. 工程力学, 2009, 26(10): 74-078.
[12] 蒋田勇;方 志. CFRP筋在RPC中锚固性能的理论分析及试验研究[J]. 工程力学, 2009, 26(1): 166-173.
[13] 郑乔文;薛伟辰. 粘砂变形GFRP筋的粘结滑移本构关系[J]. 工程力学, 2008, 25(9): 0-169.
[14] 徐世烺;王洪昌. 超高韧性水泥基复合材料与钢筋粘结本构关系的试验研究[J]. 工程力学, 2008, 25(11): 53-061.
[15] 彭福明;张晓欣;岳清瑞;杨勇新. FRP加固金属拉伸构件的性能分析[J]. 工程力学, 2007, 24(3): 0-192,.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周小平;杨海清;张永兴. 有限宽偏心裂纹板在裂纹面受两对集中拉力作用时裂纹线的弹塑性解析解[J]. 工程力学, 2008, 25(1): 0 -027 .
[2] 张冬娟;崔振山;李玉强;阮雪榆. 平面应变板料拉弯成形回弹理论分析[J]. 工程力学, 2007, 24(7): 0 -071 .
[3] 张伯艳;陈厚群. LDDA动接触力的迭代算法[J]. 工程力学, 2007, 24(6): 0 -006 .
[4] 陈有亮;邵伟;周有成. 水饱和混凝土单轴压缩弹塑性损伤本构模型[J]. 工程力学, 2011, 28(11): 59 -063, .
[5] 吴方伯;黄海林;陈伟;周绪红;. 肋上开孔对预制预应力混凝土带肋薄板施工阶段挠度计算方法的影响研究[J]. 工程力学, 2011, 28(11): 64 -071 .
[6] 李宗利;杜守来. 高渗透孔隙水压对混凝土力学性能的影响试验研究[J]. 工程力学, 2011, 28(11): 72 -077 .
[7] 王坤;谢康和;李传勋;童磊. 特殊条件下考虑起始比降的双层地基一维固结解析解[J]. 工程力学, 2011, 28(11): 78 -082 .
[8] 姜亚洲;任青文;吴晶;杜小凯. 基于双重非线性的混凝土坝极限承载力研究[J]. 工程力学, 2011, 28(11): 83 -088 .
[9] 吴明;彭建兵;徐平;孙苗苗;夏唐代. 考虑土拱效应的挡墙后土压力研究[J]. 工程力学, 2011, 28(11): 89 -095 .
[10] 陆本燕;刘伯权;邢国华;吴涛. 桥梁结构基于性能的抗震设防目标与性能指标研究[J]. 工程力学, 2011, 28(11): 96 -103, .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日