工程力学 ›› 2019, Vol. 36 ›› Issue (8): 40-48.doi: 10.6052/j.issn.1000-4750.2018.10.0534

• 土木工程学科 • 上一篇    下一篇

放大型黏滞阻尼墙的力学性能与试验研究

刘文光, 张鑫, 郭彦, 张强   

  1. 上海大学土木工程系, 上海 200444
  • 收稿日期:2018-10-15 修回日期:2019-01-27 出版日期:2019-08-25 发布日期:2019-08-10
  • 通讯作者: 刘文光(1968-),男,内蒙古人,教授,博士,博导,主要从事防灾减灾工程及防护工程研究(E-mail:liuwg@aliyun.com). E-mail:liuwg@aliyun.com
  • 作者简介:张鑫(1994-),男,江苏人,硕士生,主要从事结构减震研究(E-mail:1187435569@qq.com);郭彦(1989-),女,湖南人,博士,从事防震减灾研究(E-mail:guoyanyy@foxmail.com);张强(1988-),男,江西人,硕士,从事工程结构减隔震研究(E-mail:zqiang@shu.edu.cn).
  • 基金资助:
    国家自然科学基金项目(51778355,51778356)

MECHANICAL PROPERTIES ANALYSIS AND EXPERIMENTAL RESEARCH ON MAGNIFIED VISCOUS DAMPING WALL

LIU Wen-guang, ZHANG Xin, GUO Yan, ZHANG Qiang   

  1. Department of Civil Engineering, Shanghai University, Shanghai 200444, China
  • Received:2018-10-15 Revised:2019-01-27 Online:2019-08-25 Published:2019-08-10

摘要: 该文提出一种多杠杆并联的放大型黏滞阻尼墙,根据放大型黏滞阻尼墙的构造和受力特点,分析了放大装置的竖向提拉效应,提出了普通型和放大型黏滞阻尼墙的阻尼力及耗能理论公式,并对装置的变形和耗能进行了分析。设计制作3倍位移放大型装置黏滞阻尼墙和普通黏滞阻尼墙的试验模型,并在正弦波的作用下进行往复加载试验,分析不同试验工况下黏滞阻尼墙的滞回耗能曲线,并将理论曲线与试验曲线进行了对比,验证了力学模型的正确性。在相同位移下,放大型黏滞阻尼墙比普通阻尼墙滞回曲线更加饱满、耗能更为显著。最后以三层混凝土框架结构为计算模型进行减震分析,确认了考虑竖向提拉效应的放大型黏滞阻尼墙的减震效果。

关键词: 黏滞阻尼墙, 位移放大装置, 竖向提拉效应, 静力试验, 地震响应分析

Abstract: An amplified multi-lever parallel viscous damping wall was proposed. Given its structure and force characteristics, vertical pulling effect, the damping force and energy dissipation theoretical formulas of both common and magnified viscous damping walls were analyzed, as well as its deformation and energy dissipation. An experimental model of both common and magnified viscous damping walls with triple displacements was designed to carry out a reciprocating loading test under the action of a sine wave. The hysteresis curve of viscous damping wall was verified by the comparison between a theoretical curve and the experimental curve under different experimental conditions. Furthermore, the hysteretic curve of the amplified viscous damping wall was rounder than that of a normal damping wall, and the energy dissipation was more significant under the same displacements. Therefore, the three-storey concrete frame structure was used as the calculation model for seismic analysis, which confirms the influence of vertical pulling was effective to the structure of a magnified viscous damping wall.

Key words: viscous damping walls, displacement amplification device, vertical pulling effect, static test, seismic response analysis

中图分类号: 

  • TU352.1
[1] 周云, 吴从晓, 邓雪松. 铅粘弹性阻尼器的开发、研究与应用[J]. 工程力学, 2009, 26(增刊2):80-90. Zhou Yun, Wu Congxiao, Deng Xuesong. Development, research and application of lead viscoelastic damper[J]. Engineering Mechanics, 2009, 26(Suppl 2):80-90. (in Chinese)
[2] 欧谨. 粘滞阻尼墙结构的减振理论分析和试验研究[D]. 南京:东南大学, 2006, 25(1):108-112. Ou Jin. Theoretical and experimental research on structures with viscous damping wall[D]. Nanjing:Southeast University, 2006, 25(1):108-112. (in Chinese)
[3] 周云, 粘滞阻尼减震结构设计[M]. 武汉:武汉理工大学出版社, 2006. Zhou Yun. Design for energy-dissipated structures with viscous dampers[M]. Wuhan:Wuhan University of Technology Press, 2006, (in Chinese)
[4] 汪志昊, 陈政清. 高层建筑结构中粘滞阻尼器的新型安装方式[J]. 世界地震工程, 2010, 26(4):135-140. Wang Zhihao, Chen Zhengqing. New installations of viscous dampers in high rise buildings[J]. World Earthquake Engineering, 2010, 26(4):135-140. (in Chinese)
[5] Julián M Londoño, Simon A Neild, David J Wagg. Using a damper amplification factor to increase energy dissipation in structures[J]. Engineering Structures, 2015, 84:162-171.
[6] 周云, 汪大洋, 张敏, 等. 新型粘滞-弹性阻尼器的力学性能试验与理论研究[J]. 工程力学, 2013, 30(1):331-338. Zhou Yun, Wang Dayang, Zhang Min, et al. Experimental and theory study on mechanical property of a new viscous-elastic damper[J]. Engineering Mechanics, 2013, 30(1):331-338. (in Chinese)
[7] 刘文光, 董秀玲, 何文福, 等. 位移放大型阻尼墙减震结构的模型试验与数值分析[J]. 振动工程学报, 2015, 28(4):601-609. Liu Wenguang, Dong Xiuling, He Wenfu, et al. Dynamic tests and numerical response analysis of energy dissipated structures based on displacement amplification device[J]. Journal of Vibration Engineering, 2015, 28(4):601-609. (in Chinese)
[8] 陈月明, 刘季. 杠杆粘弹性阻尼器及其受控制结构的试验研究[C]. 第一届全国结构控制会议论文集, 承德, 1998. Chen Yueming, Liu Ji. Experimental study on lever viscoelastic damper and controlled structure[C]. Proceedings of The First National Conference on Structural Control, Chengde, 1998. (in Chinese)
[9] Constantinou M C, Tsopelas P, Hammel W, et al. Toggle-brace-damper seismic energy dissipation system[J]. Journal of Structural Engineering, ASCE, 2001, 127(2):105-112.
[10] Sigaher A N, Constantinou M C. Scissor-jack-damper energy dissipation system[J]. Earthquake Spectra, 2003, 19(1):133-158.
[11] Ribakov Y, Reinhorn A M. Design of amplified structural damping using optimal considerations[J]. Journal of Structural Engineering, ASCE, 2003, 129(10):1422-1427.
[12] Berton Stefano, Bolander John E. Amplification system for supplemental damping devices in seismic applications[J]. Journal of Structural Engineering, ASCE, 2005, 131(6):979-983.
[13] Watakabe Tomoyoshi, Fujita Satoshi. Research and development of vibration control device suitable for detached houses by using displacement amplification mechanism[J]. Journal of System Design and Dynamics, 2009, 3(3):368-379.
[14] 郭彦, 刘文光, 何文福, 等. 长周期地震波作用下超高层框架-核心筒减震结构动力响应分析[J]. 建筑结构学报, 2017, 38(12):68-77. Guo Yan, Liu Wenguang, He Wenfu, et al. Dynamic response analysis of super high-rise frame-core tube structure under long-period ground motions[J]. Journal of Building Structures, 2017, 38(12):68-77. (in Chinese)
[15] Wen-Hsiung Lin, Anil K Chopra. Earthquake response of elastic SDF systems with non-linear fluid viscous dampers[J]. Earthquake Engineering and Structural Dynamics, 2002, 31(9):1623-1642.
[16] Stefano Berton, John E Bolander. Amplification system for supplemental damping devices in seismic applications[J]. Journal of Structural Engineering, ASCE, 2005, 131(6):979-983.
[1] 李达, 牟在根. 内嵌VV-SPSW平面钢框架结构抗震性能研究[J]. 工程力学, 2019, 36(S1): 210-216.
[2] 焦驰宇, 马银强, 刘陆宇, 龙佩恒, 侯苏伟. FPS支座双向加载拟静力试验与数值模拟研究[J]. 工程力学, 2019, 36(S1): 86-91.
[3] 徐龙河, 孙雨生, 要世乾, 李忠献. 装配式自复位耗能支撑恢复力模型与试验验证[J]. 工程力学, 2019, 36(6): 119-127,146.
[4] 曾磊, 谢炜, 郑山锁, 陈熠光, 任雯婷. T形配钢型钢混凝土柱-钢梁框架抗震性能研究[J]. 工程力学, 2019, 36(5): 157-165.
[5] 种迅, 张蓝方, 万金亮, 王德才, 叶献国, 解琳琳, 邵徽斌. 两层带开洞预制剪力墙抗震性能试验研究与数值模拟分析[J]. 工程力学, 2019, 36(5): 176-183.
[6] 杨勇, 陈阳, 张锦涛, 林冰, 于云龙. 部分预制装配型钢混凝土构件斜截面抗剪承载能力试验研究[J]. 工程力学, 2019, 36(4): 109-116.
[7] 董金芝, 张富文, 李向民. 框架-预应力摇摆墙结构抗震性能试验研究[J]. 工程力学, 2019, 36(4): 167-176.
[8] 邓明科, 吕浩, 宋恒钊. 外包钢板-高延性混凝土组合连梁抗震性能试验研究[J]. 工程力学, 2019, 36(3): 192-202.
[9] 崔兆彦, 徐明, 陈忠范, 王飞. 重组竹钢夹板螺栓连接承载力试验研究[J]. 工程力学, 2019, 36(1): 96-103,118.
[10] 尚庆学, 李泽, 刘瑞康, 王涛. 管线系统抗震支架力学试验研究[J]. 工程力学, 2018, 35(S1): 120-125,133.
[11] 朱柏洁, 张令心, 王涛. 轴力作用下剪切钢板阻尼器力学性能试验研究[J]. 工程力学, 2018, 35(S1): 140-144.
[12] 何文福, 许浩, 魏陆顺, 冯祎鑫, 杨巧荣. 多级性态隔震体系试验研究和结构动力响应分析[J]. 工程力学, 2018, 35(9): 97-106.
[13] 汪大洋, 韩启浩, 张永山. 多块混凝土板拼装组合钢板剪力墙试验与有限元参数影响研究[J]. 工程力学, 2018, 35(7): 83-93,138.
[14] 韩强, 贾振雷, 王晓强, 黄超. 内嵌碟簧型自复位防屈曲支撑性能试验及其恢复力模型研究[J]. 工程力学, 2018, 35(6): 144-150,190.
[15] 郑山锁, 刘巍, 左河山, 董立国, 李强强. 近海大气环境下考虑锈蚀的不同剪跨比RC框架梁抗震性能试验[J]. 工程力学, 2018, 35(4): 78-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日