工程力学 ›› 2019, Vol. 36 ›› Issue (7): 207-215.doi: 10.6052/j.issn.1000-4750.2018.10.0358

• 土木工程学科 • 上一篇    下一篇

我国公共建筑中吊顶的震害特征及其易损性分析

李戚齐, 曲哲, 解全才, 王多智   

  1. 中国地震局工程力学研究所, 中国地震局地震工程与工程振动重点试验室, 河北, 三河 065201
  • 收稿日期:2018-06-30 修回日期:2018-10-08 出版日期:2019-07-06 发布日期:2019-07-06
  • 通讯作者: 曲哲(1983-),男,陕西人,研究员,博士,从事建筑物的地震损伤控制与震后快速恢复的研究(E-mail:qzu@iem.ac.cn). E-mail:qzu@iem.ac.cn
  • 作者简介:李戚齐(1994-),女,河北人,硕士生,从事公共建筑吊顶的地震反应数值模拟与易损性研究(E-mail:mxyy7909@163.com);解全才(1982-),男,山东人,助理研究员,博士,主要从事强震动观测应用研究(E-mail:xiequancai@iem.ac.cn);王多智(1982-),女,黑龙江人,研究员,博士,主要从事大跨度空间结构与非结构构件抗震研究(E-mail:wangdz_iem@126.com).
  • 基金资助:
    中国地震局工程力学研究所基本科研业务费专项项目(2016A05);国家自然科学基金面上项目(51878629)

Seismic damage characteristics and fragility of suspended ceilings in chinese public buildings

LI Qi-qi, QU Zhe, XIE Quan-cai, WANG Duo-zhi   

  1. Key Laboratory of Earthquake Engineering and Engineering Vibration, Institute of Engineering Mechanics, China Earthquake Administration, Sanhe, Hebei 065201, China
  • Received:2018-06-30 Revised:2018-10-08 Online:2019-07-06 Published:2019-07-06

摘要: 地震中建筑物内吊顶的破坏主要表现为吊顶板、灯具等构件的坠落。其不但会造成经济损失,而且会严重影响建筑物在震后的正常使用,阻碍建筑物功能的快速恢复。该文以在2013年7.0级芦山地震中获得的我国实际吊顶的震害资料为基础,分析我国公共建筑中吊顶的震害特征。结合震害数据,以吊顶的坠板率作为衡量其损伤状态的指标,以楼面峰值加速度为工程需求参量,初步建立了我国吊顶在“快速恢复”和“难以恢复”2个损伤状态下的易损性曲线,并与国外已有的关于吊顶的易损性曲线进行了比较。结果表明:我国公共建筑吊顶的抗震能力相对较弱,边角部位尤其易于破坏;当楼面峰值加速度约为1.1 g时,吊顶即有50%的概率达到或超越“难以恢复”状态。

关键词: 震害调查, 吊顶, 坠板率, 楼面峰值加速度, 易损性曲线

Abstract: The suspended ceilings in buildings are vulnerable to the falling of components such as ceiling tiles and light fixtures in earthquakes. These may lead to economic loss and hamper the quick recovery of the occupancy of buildings after earthquake. Based on the field investigation data on suspended ceilings due to Lushan earthquake of M7.0 in 2013, the seismic damage characteristics of the suspended ceilings in public buildings in China is investigated. The seismic fragility curves are established for suspended ceiling in China in terms of the tile falling ratio and peak floor acceleration under the ‘quick recover’ and ‘hard to recover’ damage states, and compared with the existing fragility curves in the literature for ceilings in the US. The results suggest that the suspended ceilings in China are more vulnerable than that in the US counterparts and the components near the corners and edges are easier to be damaged. The ceilings exhibited a 50% probability of exceeding the ‘hard to recover’ damage state when the floor peak acceleration is approximately 1.1 g.

Key words: earthquake reconnaissance, suspended ceiling, tile falling ratio, peak floor acceleration, fragility curve

中图分类号: 

  • P315.9
[1] Wang D Z, Dai J W, Qu Z, et al. Shake table tests of suspended ceilings to simulate the observed damage in the Ms 7.0 Lushan earthquake, China[J]. Earthquake Engineering and Engineering Vibration, 2016, 15(2):239-249.
[2] Magliulo G, Pentangelo V, Maddaloni G, et al. Shake table tests for seismic assessment of suspended continuous ceilings[J]. Bulletin of Earthquake Engineering, 2012, 10(6):1819-1832.
[3] Miranda E, Mosqueda G, Retamales R, et al. Performance of nonstructural components during the 27 February 2010 Chile earthquake[J]. Earthquake Spectra, 2012, 28(Suppl 1):2354-2361.
[4] Glasgow B, Gilani A S J, Miyamoto H K. Resilient suspended ceilings for sustainable design of buildings[C]//Structures Congress, 2010:2575-2587.
[5] Gilani A S J, Reinhorn A M, Glasgow B, et al. Earthquake simulator testing and seismic evaluation of suspended ceilings[J]. Journal of Architectural Engineering, 2010, 16(2):63-73.
[6] Badillo-Almaraz H, Whittaker A S, Reinhorn AM, et al. Seismic fragility of suspended ceiling systems[J]. Earthquake Spectra, 2007, 23(1):21-40.
[7] Echevarria A A, Zaghi A E, Soroushian S, et al. Seismic fragility of suspended ceiling systems[C]//Proceedings of the 15th World Conference on Earthquake Engineering. Lisbon, Portugal:WCEE, 2012, CD-ROM Paper No.4325.
[8] Ryu K.P., Reinborn A.M., Filiatrault A., et al. Full scale dynamic testing of large area suspended ceiling system[C]//Proceedings of the 15th World Conference on Earthquake Engineering. Lisbon, Portugal:WCEE, 2012, CD-ROM Paper No.5474.
[9] Soroushian S, Rahmanishamsi E, Ryu K P, et al. Experimental fragility analysis of suspension ceiling systems[J]. Earthquake Spectra, 2016, 32(2):881-908.
[10] Soroushian S, Maragakis M, Jenkins C. Axial capacity evaluation of typical suspended ceiling joints[J]. Earthquake Spectra, 2016, 32(1):547-565.
[11] Gilani A S J, Takhirov S M, Tedesco L. Seismic Evaluation procedure for suspended ceilings and components new experimental approach[C]//Proceedings of the 15th World Conference on Earthquake Engineering. Lisbon, Portugal:WCEE, 2012, CD-ROM Paper No.0326.
[12] Yao G C. Seismic performance of direct hung suspended ceiling systems[J]. Journal of Architectural Engineering, 2000, 6(1):6-11.
[13] ANCO, Seismic hazard assessment of nonstructural ceiling components-Phase I[R]. ANCO Engineering, Inc. Culver City, CA, 1983.
[14] Rihal S S, Granneman G. Experimental investigation of the dynamic behavior of building partitions and suspended ceilings during earthquake[C]//Proceedings of the 8th World Conference on Earthquake Engineering. San Francisco, CA:WCEE, 1984, 5:1135-1142.
[15] Rihal SS, Granneman G. Experimental investigation of the dynamic behavior of building partitions and suspended ceilings during earthquake[R]. USA:University of California Earthquake Enginering Research Center, 1984.
[16] Soroushian S, Ryan K L, Maragakis M, et al. NEES/E-Defense tests:seismic performance of ceiling/sprinkler piping nonstructural systems in base isolated and fixed base building[C]//Proceedings of the 15th World Conference on Earthquake Engineering. Lisbon, Portugal:WCEE, 2012, CD-ROM Paper No.5101.
[17] 张鹏, 芦燕. 框架结构中吊顶的地震响应分析[C]//全国现代结构工程学术研讨会论文集, 2014:1472-1478. Zhang Peng, Lu Yan. Seismic response analysis of suspended ceiling in frame structure[C]//National Conference of Modern Structural Engineering, 2014:1472-1478. (in Chinese)
[18] GB 50011-2010, 建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50011-2010, Code of seismic design of buildings[S]. Beijing:China Architecture & Building Press, 2010. (in Chinese)
[19] 12J502-2, 国家建筑标准设计图集《内装修-室内吊顶》[S]. 北京:中国计划出版社, 2013. 12J502-2, The national building standard design atlas "interior decoration-the ceiling of the room"[S]. Beijing:China Planning Press, 2013. (in Chinese)
[20] ASCE/SEI 41-06, Seismic rehabilitation of existing buildings[S]. American Society of Civil Engineers, Reston, VA, 2006.
[21] 4.20芦山地震烈度图[EB]. 中国地震局, 2013-04-25. Earthquake intensity map of ‘4.20’ Lushan earthquake in Sichuan[EB]. China Earthquake Administration (CEA), 2013-04-25. (in Chinese)
[22] USGS, M6.6-56 km WSW of Linqiong, China[EB]. https://earthquake.usgs.gov/earthquakes/eventpage/usb000gcdd#shakemap, 2013-04-20.
[23] Si H J, Midorikawa S. New attenuation relations for peak ground acceleration and velocity considering effects of fault type and site condition[C]//Proceedings of the 12th World Conference on Earthquake Engineering. Auckland, New Zealand:WCEE, 2000, Paper No.0532.
[24] ASCE7-10, Minimum design loads for buildings and other structures 7[S]. Restonl, VA:American Society of Civil Engineers, 2010.
[25] BSSC NEHRP recommended provisions for seismic regulations for new buildings and other structures FEMA302/303 Part 1 and Part 2[R]. Washington DC:Federal Emergency Management Agency, 2010.
[26] FEMA. Seismic performance assessment of buildings Volume 1-methodology[R]. Washington DC:Federal Emergency Management Agency, 2010.
[1] 李宏男, 成虎, 王东升. 桥梁结构地震易损性研究进展述评[J]. 工程力学, 2018, 35(9): 1-16.
[2] 孙小云, 韩建平, 党育, 周颖. 地震动持时对考虑梁柱节点区不同破坏模式RC框架的地震易损性影响[J]. 工程力学, 2018, 35(5): 193-203.
[3] 魏标, 杨添涵, 蒋丽忠. 轨道结构建模精细化程度对高速铁路连续梁桥地震易损性的影响[J]. 工程力学, 2018, 35(4): 16-23,51.
[4] 王树和, 张举兵. 基于地震损失风险钢筋混凝土框架结构弯矩增大系数评估[J]. 工程力学, 2018, 35(3): 132-140.
[5] 张昊宇, 王涛, 林旭川, 曲哲, 毛晨曦. 尼泊尔8.1级地震钢筋混凝土框架典型震害及讨论[J]. 工程力学, 2016, 33(9): 59-68.
[6] 李立峰, 吴文朋, 胡思聪, 刘守苗. 考虑氯离子侵蚀的高墩桥梁时变地震易损性分析[J]. 工程力学, 2016, 33(1): 163-170.
[7] 杨馨, 贺小岗, 赵作周, 钱稼茹. 少钢支撑RC框架结构的概念[J]. 工程力学, 2015, 32(增刊): 129-135.
[8] 吴巧云,朱宏平. 基于随机IDA的结构量化指标限值求解方法[J]. 工程力学, 2014, 31(4): 61-68.
[9] 樊剑,龙晓鸿,赵军. 近场地震下隔震结构基底发生碰撞的鲁棒易损性曲线计算[J]. 工程力学, 2014, 31(1): 166-172.
[10] 何益斌, 李艳, 沈蒲生. 基于性能的高层混合结构地震易损性分析[J]. 工程力学, 2013, 30(8): 142-147,162.
[11] 吴巧云, 朱宏平, 樊剑. 基于性能的钢筋混凝土框架结构地震易损性分析[J]. 工程力学, 2012, 29(9): 117-124.
[12] 曾志和;樊剑;余倩倩. 基于性能的桥梁结构概率地震需求分析[J]. 工程力学, 2012, 29(3): 156-162.
[13] 丁阳;伍敏;徐龙河;李忠献. 钢筋混凝土柱基于易损性曲线的地震损伤评估[J]. 工程力学, 2012, 29(1): 81-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日