工程力学 ›› 2019, Vol. 36 ›› Issue (8): 210-216,225.doi: 10.6052/j.issn.1000-4750.2018.09.0519

• 土木工程学科 • 上一篇    下一篇

基于建筑需求的新型黏滞阻尼器开敞式布置机构研究

朱丽华1,2, 王健2, 于安琪2, 单诗宇2   

  1. 1. 西安建筑科技大学省部共建西部绿色建筑国家重点实验室, 西安 710055;
    2. 西安建筑科技大学土木工程学院, 西安 710055
  • 收稿日期:2018-09-29 修回日期:2019-01-17 出版日期:2019-08-25 发布日期:2019-08-10
  • 通讯作者: 朱丽华(1979-),男,江苏溧阳人,教授,博士,从事地震工程、结构振动控制研究(E-mail:zhulihuaxa@163.com). E-mail:zhulihuaxa@163.com
  • 作者简介:王健(1990-),男,河北邯郸人,硕士生,从事结构工程减震研究(E-mail:wj936437623@163.com);于安琪(1992-),女,内蒙古赤峰人,硕士生,从事结构工程减震研究(E-mail:15754710807@163.com);单诗宇(1988-),男,陕西汉中人,硕士生,从事结构工程减震研究(E-mail:280008219@qq.com).
  • 基金资助:
    国家自然科学基金项目(51878552);国家重点研发计划项目(2017YFC0703600);陕西省重点研发计划重点产业创新链(群)项目(2018ZDCXL-SF-03-03-01)

A NOVEL VISCOUS DAMPER INSTALLATION CONFIGURATION CONSIDERING ARCHITECTURAL REQUIREMENTS

ZHU Li-hua1,2, WANG Jian2, YU An-qi2, SHAN Shi-yu2   

  1. 1. State Key Laboratory of Green Building in Western China, Xi'an University of Architecture & Technology, Xi'an 710055, China;
    2. School of Civil Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, China
  • Received:2018-09-29 Revised:2019-01-17 Online:2019-08-25 Published:2019-08-10

摘要: 黏滞阻尼器耗能减震结构的减震效果与阻尼器在结构中的安装方式密切相关,已有黏滞阻尼器布置机构主要考虑结构减震需求和安装连接简单方便,而未考虑建筑需求。针对现有黏滞阻尼器布置机构占用结构框格内空间、阻碍视野的不足,提出了一种新型黏滞阻尼器开敞式布置机构。介绍了开敞式布置机构的构造与工作原理,并对机构的力学性能进行理论分析,推导了位移放大系数和等效阻尼比计算公式。设计并制作了一个设置黏滞阻尼器开敞式布置机构的钢框架试件,给试件施加正弦位移激励,分析了开敞式布置机构在动力作用下的受力性能,以及在不同位移幅值、频率工况下,框架侧移与阻尼器两端相对位移之间的关系,验证了该文提出的位移放大系数计算公式的准确性。采用SAP2000对比分析了一个无控钢框架结构,以及设置阻尼器对角布置机构和开敞式布置机构后的减震性能,验证了该新型布置机构在实际工程中应用的可行性。

关键词: 黏滞阻尼器, 阻尼器布置机构, 位移放大系数, 消能减震, 动力加载

Abstract: The damping effect of energy dissipation system with viscous dampers is closely associated with their installation configurations in the structure. The damping requirement and simple convenient connection are mainly concerned in the existing viscous damper installation configurations, but the architectural requirements are not considered. Aiming at the drawback of existing viscous damper installation configurations, which occupy the entire bays in frames and obstruct the vision, a novel viscous damper installation configuration is proposed. The structure composition and working principle of the open viscous damper installation configuration were introduced. Its mechanical characteristics were analyzed theoretically, and the calculation formulas for the displacement magnification factor and effective damping ratio of the configuration were proposed. A steel frame specimen installed with open configuration was designed and produced. By applying sinusoidal displacement excitation on the specimen, the mechanical behavior under dynamic load and the relationship between the frame lateral displacement and the relative displacement of both ends of the damper under different displacement amplitudes and frequencies were analyzed, which verified the accuracy of the calculation formula for the magnification factor proposed in this paper. The seismic behavior of an uncontrolled steel frame structure and two controlled structures installed with diagonal brace and open viscous damper configurations were analyzed using SAP2000, which verified the feasibility of the open viscous damper installation configuration in practical engineering.

Key words: viscous damper, damper installation configuration, displacement magnification factor, energy dissipation, dynamic loading

中图分类号: 

  • TU352.1
[1] 兰香, 潘文, 白羽, 等. 基于支撑刚度的消能减震结构最优阻尼参数研究[J]. 工程力学, 2018, 35(8):208-217. Lan Xiang, Pan Wen, Bai Yu, et al. Research on optimum damping parameters of an energy dissipation structure based on the support stiffness[J]. Engineering Mechanics, 2018, 35(8):208-217. (in Chinese)
[2] 周颖, 龚顺明. 混合非线性黏弹性阻尼器非线性特征与力学模型研究[J]. 工程力学, 2018, 35(6):132-143. Zhou Ying, Gong Shunming. Study on nonlinear characteristics and mechanical model of hybrid nonlinear viscoleastic damper[J]. Engineering Mechanics, 2018, 35(6):132-143. (in Chinese)
[3] 朱立华, 李钢, 李宏男. 考虑结构损伤的消能减震结构能量设计方法[J]. 工程力学, 2018, 35(5):75-85. Zhu Lihua, Li Gang, Li Hongnan. Energy-based aseismic design for buildings with passive energy dissipation systems considering damage[J]. Engineering Mechanics, 2018, 35(5):75-85. (in Chinese)
[4] Pollini N, Lavan O, Amir O. Towards realistic minimum-cost optimization of viscous fluid dampers for seismic retrofitting[J]. Bulletin of Earthquake Engineering, 2016, 14(3):971-998.
[5] Hamidia M, Filiatrault A, Aref A. Seismic collapse capacity-based evaluation and design of frame buildings with viscous dampers using pushover analysis[J]. Journal of Earthquake Engineering, 2015, 141(6):1-12.
[6] Soong T T, Spencer Jr B F. Supplemental energy dissipation:State-of-the-art and state-of-the-practice[J]. Engineering Structures, 2002, 24(3):243-259.
[7] Soong T T, Dargushi G F. Passive energy dissipation systems in structural engineering[M]. New York:Wiley, Hoboken, NJ, 1997:56.
[8] Constantinou M C, Tsopelas P, Hammel W, et al. Toggle-brace-damper seismic energy dissipation systems[J]. Journal of Structural Engineering, 2001, 127(2):105-112.
[9] Sigaher N, Constantinou M C. Scissor-jack-damper energy dissipation system[J]. Earthquake Spectra, 2003, 19(1):133-158.
[10] Hwang JennShin, Huang,YinNan Hung YaHui. Analytical and experimental study of toggle-bracedamper systems[J]. Journal of Structural Engineering, 2005, 131(7):1035-1043.
[11] Berton S, Bolander J E. Amplification system for supplemental damping devices in seismic applications[J]. Journal of Structural Engineering, 2005, 131(6):79-83.
[12] Jae-Do Kang, Hiroshi Tagawa. Seismic performance of steel structures with seesaw energy dissipation system using fluid viscous dampers[J]. Engineering Structures, 2013, 56(Complete):431-442.
[13] Mosquera J S B, Almazán J L, Tapia N F. Amplification system for concentrated and distributed energy dissipation devices[J]. Earthquake Engineering & Structural Dynamics, 2016, 45(6):935-956.
[14] 周云, 林绍明, 邓雪松, 等. 设置悬臂肘节型黏滞阻尼器高层结构的减震效果分析[J]. 工程抗震与加固改造, 2014, 36(2):8-14. Zhou Yun, Lin Shaoming, Deng Xuesong, et al. Analysis of seismic mitigation effect on high-rise building with cantilever-toggle-brace viscous dampers[J]. Earthquake Resistant Engineering and Retrofitting, 2014, 36(2):8-14. (in Chinese)
[15] GB 50011-2010, 建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2016. GB 50011-2010, Code for seismic design of buildings[S]. Beijing:China Architecture & Building Press, 2016. (in Chinese)
[16] 缪志伟, 宋前恩, 裘赵云. 强震作用下附设粘滞阻尼器RC框架结构的耗能机制与抗倒塌性能研究[J]. 工程力学, 2014, 31(7):36-44. Miao Zhiwei, Song Qian'en, Qiu Zhaoyun. Study on energy distribution and collapse-resistant capacity of RC frames with nonlinear viscous dampers under strong earthquakes[J]. Engineering Mechanics, 2014, 31(7):36-44. (in Chinese)
[1] 曹胜涛, 李志山, 刘付钧, 黄忠海. 基于Bouc-Wen模型的消能减震结构显式非线性时程分析[J]. 工程力学, 2019, 36(S1): 17-24.
[2] 周颖, 吴浩, 顾安琪. 地震工程:从抗震、减隔震到可恢复性[J]. 工程力学, 2019, 36(6): 1-12.
[3] 兰香, 潘文, 白羽, 张龙飞, 余文正. 基于支撑刚度的消能减震结构最优阻尼参数研究[J]. 工程力学, 2018, 35(8): 208-217.
[4] 周颖, 龚顺明. 混合非线性黏弹性阻尼器非线性特征与力学模型研究[J]. 工程力学, 2018, 35(6): 132-143.
[5] 朱立华, 李钢, 李宏男. 考虑结构损伤的消能减震结构能量设计方法[J]. 工程力学, 2018, 35(5): 75-85.
[6] 孙彤, 李宏男. 新型多维形状记忆合金阻尼器的试验研究[J]. 工程力学, 2018, 35(3): 178-185.
[7] 薛建阳, 董金爽, 隋龑, 刘祖强. 附设粘滞阻尼器的传统风格建筑混凝土双枋-柱节点抗震性能分析[J]. 工程力学, 2018, 35(1): 98-108.
[8] 卢德辉, 周云, 邓雪松, 张超. 钢管铅阻尼器构造优化及模拟分析[J]. 工程力学, 2017, 34(3): 76-83.
[9] 缪志伟, 宋前恩, 李爱群. 减震设计与抗震设计RC框架结构抗地震倒塌能力对比[J]. 工程力学, 2016, 33(8): 24-31.
[10] 龚顺明, 周颖, 吕西林. 带黏弹性阻尼器结构振动台试验数值模拟[J]. 工程力学, 2015, 32(增刊): 226-232.
[11] 高向宇, 李自强, 李建勤, 黄海涛, 武娜, 任洁. 用外贴BRB减震框架加固既有混凝土结构的研究[J]. 工程力学, 2014, 31(8): 116-125,153.
[12] 王维凝, 闫维明, 彭凌云. 不同水准地震作用下铅消能器附加给结构的有效阻尼比及其设计取值研究[J]. 工程力学, 2014, 31(3): 173-180.
[13] 许 斌;龙业平. 基于纤维模型的钢筋混凝土柱应变率效应研究[J]. 工程力学, 2011, 28(7): 103-108,.
[14] 裴星洙;赵光伟;李 鹏;刘正伟. 消能减震结构的损伤集中分布研究[J]. 工程力学, 2007, 24(增Ⅰ): 0-128.
[15] 周建中;赵鸿铁;薛建阳;徐赵东. 模糊混合控制结构体系的弹塑性时程分析[J]. 工程力学, 2003, 20(4): 152-155,.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日