工程力学 ›› 2019, Vol. 36 ›› Issue (10): 244-256.doi: 10.6052/j.issn.1000-4750.2018.09.0514

• 其他工程学科 • 上一篇    

排式双翼布局低雷诺数气动特性计算研究

张庆1, 叶正寅2   

  1. 1. 西安航空学院飞行器学院, 西安 710077;
    2. 西北工业大学航空学院, 西安 710072
  • 收稿日期:2018-09-21 修回日期:2019-05-25 出版日期:2019-10-25 发布日期:2019-06-25
  • 通讯作者: 叶正寅(1962-),男,湖北浠水人,教授,博士,博导,主要从事非定常空气动力学和流固耦合力学研究(E-mail:yezy@nwpu.edu.cn). E-mail:yezy@nwpu.edu.cn
  • 作者简介:张庆(1987-),男,湖北襄樊人,讲师,博士,主要从事抖振抑制和微型飞行器气动布局设计(E-mail:zhangqing2220@mail.nwpu.edu.cn).
  • 基金资助:
    国家自然科学基金项目(11272262);国家863计划项目(2014AA7060201);通用航空工程技术中心基金项目(XHY-2016084)

COMPUTATIONAL INVESTIGATIONS FOR AERODYNAMIC CHARACTERISTIC ANALYSIS OF LOW REYNOLDS NUMBER DOUBLY-TANDEM WING CONFIGURATIONS

ZHANG Qing1, YE Zheng-yin2   

  1. 1. School of Aircraft, Xi'an Aeronautical University, Xi'an 710077, China;
    2. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
  • Received:2018-09-21 Revised:2019-05-25 Online:2019-10-25 Published:2019-06-25

摘要: 作为一种新型的气动布局形式,排式布局对低雷诺数流动具有较高的气动效率,适用于柔性可充气飞行器,比如充气式飞机或是高空飞艇。但是,由于前、后翼之间强烈的气动干扰现象,目前对此类布局的气动特性认识还十分有限。为了充分理解这种布局的气动特点,在前期风洞试验的基础上,开展了数值模拟工作,详细地研究了低雷诺数情况下翼型厚度、表面波纹状外形及后翼偏转角度等几何因素对此类飞行器气动特性的影响规律。计算结果表明,在计算的迎角范围内,排式布局能通过前后翼之间的气动干扰延缓或抑制机翼后缘处的流动分离,从而提高整体气动效率,因此排式布局在未来很适合应用于小型无人机或是飞艇等可充气式飞行器构型上。

关键词: 排式布局, 气动特性, 低雷诺数流动, 升力增加, 流动分离

Abstract: As a configuration with high aerodynamic efficiency, a tandem wing is an innovative kind of aerodynamic configuration for flight vehicles with inflatable aerodynamic structures such as stratosphere airships or inflatable wings at low Reynolds number flow regimes. However, its aerodynamic characteristics are limited understanding because of complicated interferences of the two wings. Therefore, based on conducted wind tunnel experiments, computational simulations have been carried out. Then the effects of airfoil thickness, surface wavelet and hindwing deflection angle on general aerodynamic characteristics were compared and presented quantitatively. The computational results demonstrate that at the computational range of attack angle, tandem wing configuration could delay, or even suppress the trailing edge separation and then increase the aerodynamic efficiency significantly, thus it is concluded that the aerodynamic configuration is attractive and promising for UAVs or airships with flexible structures in the near future.

Key words: tandem wing, aerodynamic characteristics, low reynolds number flow, lift enhancement, flow separation

中图分类号: 

  • V211.53
[1] Ellington C P, Berg C V D, Willmott A P, et al. Leadingedge vortices in insect flight[J]. Nature, 1996, 384(6610):626-630.
[2] Dickinson M H, Lehmann F O, Sane S P. Wing rotation and the aerodynamic basis of insect flight[J]. Science, 1999, 284(5422):1954-1960.
[3] Srygley R B, Thomas A L R. Unconventional lift-generating mechanisms in free-flying butterflies[J]. Nature, 2002, 420(6916):660-664.
[4] Taylor G K, Nudds R L, Thomas A L. Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency[J]. Nature, 2003, 425(6959):707.
[5] 童秉纲, 陆夕云. 关于飞行和游动的生物力学研究[J]. 力学进展, 2004, 34(1):1-8. Tong Binggang, Lu Xiyun. A review on biomechanics of animal flight and swimming[J]. Advances in Mechanics, 2004, 34(1):1-8. (in Chinese)
[6] 叶正寅, 李峰, 李春娜, 等. 排式飞翼高空飞艇的气动布局[P]. 中国专利, CN 101758921 A, 2010. Ye Zhengyin, Li Feng, Li Chunna, et al. Aerodynamic configuration of high altitude airship with tandem flying-wing[P]. Chinese Patent, CN 101758921 A, 2010. (in Chinese)
[7] 叶正寅, 杨磊, 周乃桢, 等. 一种飞机短距起降的导流叶栅[P]. 中国专利, CN 102390522 A, 2012. Ye Zhengyin, Yang Lei, Zhou Naizhen, et al. Flow guide blade grid for short-distance taking off and landing of airplane[P]. Chinese patent, CN 102390522 A, 2012. (in Chinese)
[8] 叶正寅, 张庆, 马博平, 等. 一种翼展可变的充气式浮升一体化平流层飞艇[P]. 中国专利, CN 104925243 A, 2015. Ye Zhengyin, Zhang Qing, Ma Boping, et al. A inflatable buoyancy-lifting integrated stratosphere airship with variable span[P]. Chinese patent, CN 104925243 A, 2015. (in Chinese)
[9] 李峰, 叶正寅, 高超. 一种新型浮升一体化排式飞翼的设计与研究[J]. 力学学报, 2009, 41(6):850-858. Li Feng, Ye Zhengyin, Gao Chao. Design and research for a new type buoyancy-lifting row flying-wings[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(6):850-858. (in Chinese)
[10] 李峰, 叶正寅, 高超. 基于响应面法的新型排翼式飞艇的气动优化设计[J]. 力学学报, 2011, 43(6):1068-1076. Li Feng, Ye Zhengyin, Gao Chao. Aerodynamic optimization design of new type tandem airship based on response surface methodology[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6):1068-1076. (in Chinese)
[11] Li Feng, Ye Zhengyin, Gao Chao. Design of a new tandem wings hybrid airship[J]. Science China Physics, Mechanics & Astronomy, 2012, 55(10):1886-1893.
[12] 李峰, 叶正寅, 高超. 新型浮升一体化飞艇的总体性能和应用研究[J]. 工程力学, 2013, 30(3):437-444, 458. Li Feng, Ye Zhengyin, Gao Chao. Overall performance and application research on a new type buoyancy-lifting airship[J]. Engineering Mechanics, 2013, 30(3):437-444, 458. (in Chinese)
[13] 李峰, 叶正寅, 高超. 新型排翼式浮升一体化飞艇的布局设计和气动研究[J]. 计算物理, 2013, 30(2):180-186. Li Feng, Ye Zhengyin, Gao Chao. Configuration design and aerodynamic research of new type tandem buoyancy-lifting airships[J]. Chinese Journal of Computational Physics, 2013, 30(2):180-186. (in Chinese)
[14] 华如豪, 叶正寅. 排式充气机翼的高效气动布局研究[J]. 空气动力学学报, 2012, 30(2):184-191. Hua Ruhao, Ye Zhengyin. Research on effective aerodynamic configuration of row inflatable wings[J]. Acta Aerodynamica Sinica, 2012, 30(2):184-191. (in Chinese)
[15] 华如豪, 叶正寅. 排翼布局飞行器气动性能的实验研究[J]. 实验力学, 2013, 28(4):453-459. Hua Ruhao, Ye Zhengyin. Experimental investigation on the aerodynamic characteristics of row-biplane aircraft[J]. Journal of Experimental Mechanics, 2013, 28(4):453-459. (in Chinese)
[16] 杜晓庆, 王玉梁, 赵燕, 等. 高雷诺数下错列双圆柱气动干扰的机理研究[J]. 工程力学, 2018, 35(9):223-231. Du Xiaoqing, Wang Yuliang, Zhao Yan, et al. On mechanisms of aerodynamic interference between two staggered circular cylinders at high Reynolds number[J]. Engineering Mechanics, 2018, 35(9):223-231. (in Chinese)
[17] 姚大鹏, 申功炘, 朱百六,等. 机械蜻蜓悬停时的气动力实验研究[J]. 实验流体力学, 2011, 25(1):69-75. Yao Dapeng, Shen Gongxin, Zhu baoliu, et al. Force measurement of hovering dragonfly via an electromechanical model[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(1):69-75. (in Chinese)
[18] 苏建民, 宋笔锋, 张亚锋. 临近空间飞艇排翼式艇翼气动干扰实验研究[J]. 实验流体力学, 2009, 23(3):58-64. Su Jianmin, Song Bifeng, Zhang Yafeng. Experimental investigation on aerodynamic interference of near space tandem airship[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(3):58-64. (in Chinese)
[19] 詹慧玲, 白鹏, 陈钱, 等. 双翼布局微型飞行器气动特性试验研究[[J]. 实验流体力学, 2009, 23(3):24-30, 39. Zhan Huiling, Bai Peng, Chen Qian, et al. Experimental investigation on the aerodynamic characteristics of biplane micro-air-vehicles J]. Journal of Experiments in Fluid Mechanics, 2009, 23(3):24-30, 39. (in Chinese)
[20] 刘志强, 史志伟, 白鹏. 双翼微型飞行器水平阵风响应实验研究[J]. 实验流体力学, 2009, 23(3):54-57. Liu Zhiqiang, Shi Zhiwei, Bai Peng. Experimental investigation on the unsteady aerodynamic characteristics of biplane MAV in horizontal gust[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(3):54-57. (in Chinese)
[21] 王伟, 王华, 贾清萍. 充气机翼承载能力和气动特性分析[J]. 航空动力学报, 2010, 25(10):2296-2301. Wang Wei, Wang Hua, Jia Qingping. Analysis on bearing capacity and aerodynamic performance of an inflatable wing[J]. Journal of Aerospace Power, 2010, 25(10):2296-2301. (in Chinese)
[22] 蒋跃文, 叶正寅, 张正科. 充气结构与流场的耦合求解方法[J]. 力学学报, 2010, 42(1):1-7. Jiang Yuewen, Ye Zhengyin, Zhang Zhengke. Model of inflatable structures and fluid interaction for variable leading edge[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(1):1-7. (in Chinese)
[23] 谢长川, 王伟建, 杨超. 充气式机翼的颤振特性分析[J]. 北京航空航天大学学报, 2011, 37(7):833-838. Xie Changchuan, Wang Weijian, Yang Chao. Flutter analysis of inflatable wings[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(7):833-838. (in Chinese)
[24] 朱亮亮, 叶正寅. 充气式机翼的通用设计方法[J]. 空军工程大学学报(自然科学版), 2009, 10(5):16-21. Zhu Liang, Ye Zhengyin. Research on a universal design method for inflatable wings[J]. Journal of Airforce Engineering (Natural Science Edition), 2009, 10(5):16-21. (in Chinese)
[25] Zhang Q, Hua R H, Ye Z Y. Experimental and computational investigation of novel vertical tail buffet suppression method for high sweep delta wing[J]. Science China Technological Sciences, 2015, 58(1):147-157.
[26] Zhang Q, Ye Z Y. Novel method based on inflatable bump for vertical tail buffeting suppression[J]. Journal of Aircraft, 2015, 52(1):367-371.
[27] 张庆, 叶正寅. 一种基于充气气囊的垂尾抖振抑制新方法研究[J]. 工程力学, 2014, 31(12):234-240. Zhang Qing, Ye Zhengyin. Study on a new method for suppression of vertical Tail buffeting using inflatable bumps[J]. Engineering Mechanics, 2014, 31(12):234-240. (in Chinese)
[28] 张庆. 高速再入飞行器动力学问题研究[D]. 西安:西北工业大学, 2018. Zhang Qing. Research on flight dynamics of highvelocity reentry vehicles[D]. Xi'an:Northwestern Polytechnical University, 2018. (in Chinese)
[1] 张景钰, 张明金, 李永乐, 房忱, 向活跃. 高速铁路路堤-路堑过渡段复杂风场和列车气动效应风洞试验研究[J]. 工程力学, 2019, 36(1): 80-87.
[2] 姚志勇, 张楠, 夏禾, 李小珍. 基于重叠网格的三维车桥系统气动特性研究[J]. 工程力学, 2018, 35(2): 38-46.
[3] 朱世权, 李海元, 陈志华, 张辉. 弹性机翼静气动弹性数值研究[J]. 工程力学, 2017, 34(增刊): 326-332.
[4] 马杰, 陈志华, 孙晓晖, 薛大文. 射流控制条件下超声速尾翼弹的气动特性[J]. 工程力学, 2016, 33(9): 250-256.
[5] 董祥瑞, 陈耀慧, 董刚, 刘怡昕. 高超声速激波/边界层干扰及MVG阵列流动控制研究[J]. 工程力学, 2016, 33(7): 23-30.
[6] 薛大文, 陈志华, 孙晓晖. 微涡流发生器对激波边界层作用诱导的流体分离控制[J]. 工程力学, 2016, 33(7): 227-233.
[7] 马杰, 陈志华, 孙晓晖, 薛大文. 超声速旋转火箭弹气动流场的微楔控制[J]. 工程力学, 2016, 33(6): 250-256.
[8] 李永乐, 徐昕宇, 郭建明, 向活跃, 陈克坚. 六线双层铁路钢桁桥车桥系统气动特性风洞试验研究[J]. 工程力学, 2016, 33(4): 130-135.
[9] 李钊, 陈海昕, 张宇飞. 基于k-kL两方程湍流模式的尺度自适应模拟[J]. 工程力学, 2016, 33(12): 21-30.
[10] 向活跃,李永乐,胡喆, 廖海黎. 桥上孔隙式风屏障缩尺模型模拟方法的风洞试验[J]. 工程力学, 2013, 30(8): 212-216.
[11] 薛梅新,朴英. 高压喷嘴空化初生的大涡模拟[J]. 工程力学, 2013, 30(4): 417-422.
[12] 韩 艳,胡揭玄,蔡春声,李仁发. 横风作用下考虑车辆运动的车桥系统气动特性的数值模拟研究[J]. 工程力学, 2013, 30(2): 318-325.
[13] 杨党国,张征宇,孙 岩,高荣钊,朱伟军,王 超. 飞行器机翼气动/结构耦合优化设计研究[J]. 工程力学, 2012, 29(11): 360-364.
[14] 薛梅新, 吴迪, 朴英. 高压喷嘴内部空化流动的数值模拟研究[J]. 工程力学, 2012, 29(10): 46-51.
[15] 李永乐;安伟胜;蔡宪棠;何庭国. 倒梯形板桁主梁CFD简化模型及气动特性研究[J]. 工程力学, 2011, 28(增刊I): 103-109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周小平;杨海清;张永兴. 有限宽偏心裂纹板在裂纹面受两对集中拉力作用时裂纹线的弹塑性解析解[J]. 工程力学, 2008, 25(1): 0 -027 .
[2] 张伯艳;陈厚群. LDDA动接触力的迭代算法[J]. 工程力学, 2007, 24(6): 0 -006 .
[3] 陈有亮;邵伟;周有成. 水饱和混凝土单轴压缩弹塑性损伤本构模型[J]. 工程力学, 2011, 28(11): 59 -063, .
[4] 吴方伯;黄海林;陈伟;周绪红;. 肋上开孔对预制预应力混凝土带肋薄板施工阶段挠度计算方法的影响研究[J]. 工程力学, 2011, 28(11): 64 -071 .
[5] 李宗利;杜守来. 高渗透孔隙水压对混凝土力学性能的影响试验研究[J]. 工程力学, 2011, 28(11): 72 -077 .
[6] 王坤;谢康和;李传勋;童磊. 特殊条件下考虑起始比降的双层地基一维固结解析解[J]. 工程力学, 2011, 28(11): 78 -082 .
[7] 姜亚洲;任青文;吴晶;杜小凯. 基于双重非线性的混凝土坝极限承载力研究[J]. 工程力学, 2011, 28(11): 83 -088 .
[8] 吴明;彭建兵;徐平;孙苗苗;夏唐代. 考虑土拱效应的挡墙后土压力研究[J]. 工程力学, 2011, 28(11): 89 -095 .
[9] 陆本燕;刘伯权;邢国华;吴涛. 桥梁结构基于性能的抗震设防目标与性能指标研究[J]. 工程力学, 2011, 28(11): 96 -103, .
[10] 左志亮;蔡健;钟国坤;杨春;. 带约束拉杆T形截面钢管内核心混凝土的等效单轴本构关系[J]. 工程力学, 2011, 28(11): 104 -113 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日