工程力学 ›› 2019, Vol. 36 ›› Issue (8): 30-39.doi: 10.6052/j.issn.1000-4750.2018.09.0505

• 土木工程学科 • 上一篇    下一篇

路基土体“时变覆盖效应”的数值模拟分析

宋二祥, 仝睿, 罗爽, 李鹏   

  1. 清华大学土木工程系土木工程安全与耐久教育部重点试验室, 北京 100084
  • 收稿日期:2018-09-14 修回日期:2018-11-18 出版日期:2019-08-25 发布日期:2019-08-10
  • 通讯作者: 宋二祥(1957-),男,河北人,教授,博士,从事岩土力学及工程方面的教学及科研工作(E-mail:songex@tsinghua.edu.cn). E-mail:songex@tsinghua.edu.cn
  • 作者简介:仝睿(1996-),男,江苏人,博士生,从事岩土力学研究(E-mail:2319110541@qq.com);罗爽(1991-),男,重庆人,博士,从事岩土力学研究(E-mail:shuangluo09@163.com);李鹏(1985-),男,黑龙江人,博士,主要从事岩土力学数值分析研究(E-mail:lip19851231@126.com).
  • 基金资助:
    国家重点基础研究发展计划(973计划)课题项目(2014CB047003);国家自然科学基金项目(41272279,51778339)

NUMERICAL SIMULATION AND ANALYSIS OF ‘TIME-VARYING CANOPY EFFECT’ OF MOISTURE TRANSPORT IN SUBGRADE SOIL

SONG Er-xiang, TONG Rui, LUO Shuang, LI Peng   

  1. Key Laboratory of Civil Engineering Safety and Durability of the State Ministry of Education, Tsinghua University, Beijing 100084, China
  • Received:2018-09-14 Revised:2018-11-18 Online:2019-08-25 Published:2019-08-10

摘要: 针对寒区铁路路基浅层土体冻结状况变化时使其透气透水性(覆盖条件)改变,进而影响其内水分迁移、集聚乃至冻胀的现象,提出“时变覆盖效应”这一概念。基于非等温水热气耦合运移模型以及刚性冰模型,建立了对路基土体内水分迁移、冻胀发展进行模拟的数学模型。对时变覆盖效应下水分迁移与冻胀的一维问题进行模拟,揭示了时变覆盖效应下路基土体水分蒸发、迁移的规律。模拟结果显示,时变覆盖效应下,土体的冻胀量较全时完全覆盖条件下相比较小,但仍有可能对铁路设施造成危害。此外,该文还对土性、温差大小以及初始含水量对时变覆盖效应的影响进行了分析。

关键词: 时变覆盖效应, 水分迁移, 蒸发, 冻胀, 数值模拟

Abstract: The top cover condition of railway subgrade may change from evaporation boundary to sealed boundary after frozen in winter time, which will influence the transportation of moisture up from the bottom and its accumulation beneath the frozen surface. The concept of ‘time-varying canopy effect’ is introduced and a mathematical model is established for its analysis based on the non-isothermal coupled water and heat migration model as well as the rigid ice model. Water migration in one-dimension soil column is simulated considering constant canopy effect and ‘time-varying canopy effect’ respectively. Simulation results show that the frost heave under time-varying canopy conditions is smaller than that under constant canopy conditions, but it may still be large enough to disturb the normal performance of the railway. The influences of soil type, temperature difference and initial water content on the ‘time-varying canopy effect’ are also discussed.

Key words: time-varying canopy effect, moisture transport, evaporation, frost heave, numerical simulation

中图分类号: 

  • TU445
[1] 徐斅祖, 王家澄, 张立新. 冻土物理学[M]. 北京:科学出版社. 2001 Xu Xiaozu, Wang Jiacheng, Zhang Lixin. Frozen soil physics[M]. Beijing:The Science Publishing Company. 2001. (in Chinese)
[2] Taber S. The mechanics of frost heaving[J]. Journal of Geology, 1930, 38(4):303-317.
[3] Peppin S L, Style R W. The physics of frost heave and ice-lens growth[J]. Vadose Zone Journal, 2013, 12(1):1-12.
[4] Wark K J. Generalized thermodynamic relationships. Thermodynamics, 5th ed[M]. New York:McGraw-Hill, Inc., 1988.
[5] Miller R D. Freezing and heaving of saturated and unsaturated soils[J]. Highway Research Record, 1972, 393:1-11.
[6] Harlan R L. Analysis of coupled heat-fluid transport in partially frozen soil[J]. Water Resource Research, 1973, 9:1314-1323.
[7] Miller. Frost heaving in non-colloidal soils[C]. Proceedings of the 3rd International Conference on Permafrost,. Edmonton, AB, Canada. 10-13 July, 1978. Natl. Res. Counc. of Canada, Ottawa, 1978, 1:708-713.
[8] Konrad J, Duquennoi C. A Model for water transport and ice lensing in freezing soils[J]. Water Resources Research, 1993, 29(9):3109-3124.
[9] 李强, 姚仰平, 韩黎明, 等. 土体的"锅盖效应"[J]. 工业建筑, 2014, 44(2):69-71. Li Qiang, Yao Yangping, Han Liming, et al. Pot-cover effect of soil[J]. Industrial Construction, 2014, 44(2):69-71. (in Chinese)
[10] 滕继东, 贺佐跃, 张升, 等. 非饱和土水气迁移与相变:两类"锅盖效应"的发生机理及数值再现[J]. 岩土工程学报, 2016, 38(10):1813-1821. Teng Jidong, He Zuoyue, Zhang Sheng, et al. Moisture transfer and phase change in unsaturated soils:physical mechanism and numerical model for two types of "canopy effect"[J]. Chinese Journal of Geotechnical Engineering. 2016, 38(10):1813-1821. (in Chinese)
[11] 宋二祥, 罗爽, 孔郁斐, 等. 路基土体"锅盖效应"的数值模拟分析[J]. 岩土力学, 2017, 38(6):1781-1788. Song Erxiang, Luo Shuang, Kong Yufei, et al. Simulation and analysis of pot-cover effect on moisture transport in subgrade soil[J]. Rock and Soil Mechanics, 2017, 38(6):1781-1788. (in Chinese)
[12] Zhang S, Teng J, He Z, et al. Importance of vapor flow in unsaturated freezing soil:a numerical study[J]. Cold Regions Science & Technology, 2016, 126(6):1-9.
[13] Sheng D, Zhang S, Yu Z, et al. Assessing frost susceptibility of soils using PC Heave[J]. Cold Regions Science & Technology, 2013, 95(11):27-38.
[14] Philip J R, De Vries D A. Moisture movement in porous materials under temperature gradient[J]. Trans am Geophys Union, 1957, 38(2):222-232.
[15] Taylor G S, Luthin J N. A model for coupled heat and moisture transfer during soil freezing[J]. Canadian Geotechnical Journal, 1978, 15(4):548-555.
[16] Saito H, Simunek J, Scanlon B R, et al. Numerical analysis of coupled water, vapor and heat transport in the vadose zone using HYDRUS[J]. Vadose Zone Journal, 2006, 5(2):784-800.
[17] Simunek, Saito, Sakai, et al. The hydrus-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media[EB]. Departmeat of Environmental Sciences, University of California Riverside, 2005.
[18] Gaylon S Campbell. Soil physics with BASIC:transport models for soil-plant systems[M]. Amsterdam:Vol. 14Elsevier, 1985.
[19] 夏锦红, 陈之祥, 夏元友, 等. 不同负温条件下冻土导热系数的理论模型和试验验证[J]. 工程力学, 2018, 35(5):109-117. Xia Jinhong, Chen Zhixiang, Xia Yuanyou, et al. Theoretical model and experimental verification on thermal conductivity of frozen soil under different negative temperature conditions[J]. Engineering Mechanics, 2018, 35(5):109-117. (in Chinese)
[20] 原喜忠, 李宁, 赵秀云, 等. 非饱和(冻)土导热系数预估模型研究[J]. 岩土力学, 2010, 31(9):2689-2694. Yuan Xizhong, Li Ning, Zhao Xiuyun, et al. Study of thermal conductivity model for unsaturated unfrozen and frozen soils[J]. Rock and Soil Mechanics, 2010, 31(9):2689-2694. (in Chinese)
[21] Williams. Suction and its effects in unfrozen water of frozen soils. In:Permafrost, proceedings of an international conference[C]. Washington, DC:National Academy of Sciences, 1966:225-229.
[22] Williams P J. Properties And Behavior Of Freezing Soils[M]. Norwegian:Norwegian Geotechnical Institute, 1967.
[23] Anderson, Tice A R. Predicting unfrozen water contents in frozen soils from surface area measurements[J]. Highway Research Record, 1972, 393(2):12-18.
[24] Fisher E A. The freezing of water in capillary systems[J]. Journal of Physical Chemistry, 2002, 28(4):360-367.
[25] Tice A R. Determination of unfrozen water in frozen soil by pulsed nuclear magnetic resonance[C]. Permafrost, Proceedings of the Third International Conference, 1978, 1:150-155.
[26] Watanabe K, Wake T. Measurement of unfrozen water content and relative permittivity of frozen unsaturated soil using NMR and TDR[J]. Cold Regions Science & Technology, 2009, 59(1):34-41.
[27] Kurylyk B L, Watanabe K. The mathematical representation of freezing and thawing processes in variably-saturated, non-deformable soils[J]. Advances in Water Resources, 2013, 60(60):160-177.
[28] Mckenzie J M, Voss C I, Siegel D I. Groundwater flow with energy transport and water-ice phase change:Numerical simulations, benchmarks, and application to freezing in peat bogs[J]. Advances in Water Resources, 2007, 30(4):966-983.
[29] 武建军, 韩天一. 饱和正冻土水-热-力耦合作用的数值研究[J]. 工程力学, 2009, 26(4):246-251. Wu Jianjun, Han Tianyi. Numerical research on the coupled process of the moisture-heat-stress fields in saturated soil during freezing[J]. Engineering Mechanics, 2009, 26(4):246-251. (in Chinese)
[30] Bishop A W. The principle of effective stress[J]. Teknisk Ukeblad, 1959, 106(39):859-863.
[31] 毛卫南, 刘建坤. 不同离散化方法在正冻土水热耦合模型中的应用[J]. 工程力学, 2013, 30(10):128-132. Mao Weinan, Liu Jiankun. Different discretization method using in coupled water and heat transport mode for soil under freezing conditions[J]. Engineering Mechanics, 2013, 30(10):128-132. (in Chinese)
[32] Simunek J, Huang K, van Genuchten M. The HYDRUS-ET software package for simulating the one-dimentional movement of water, heat and multiple solutes in variably-saturated media, version 1.1[M]. Bratislava:Inst. Hydrology Slovak Acad. Sci, 1997.
[33] 姚仰平, 王琳. 影响锅盖效应因素的研究[J]. 岩土工程学报, 2018, 40(8):1373-1382. Yao Yangping, Wang Lin. Research on the influence factors on the "Pot-cover effect"[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8):1373-1382. (in Chinese)
[1] 焦驰宇, 马银强, 刘陆宇, 龙佩恒, 侯苏伟. FPS支座双向加载拟静力试验与数值模拟研究[J]. 工程力学, 2019, 36(S1): 86-91.
[2] 陈恒, 肖映雄, 郭瑞奇. 基于p型自适应有限元法的混凝土骨料模型数值模拟[J]. 工程力学, 2019, 36(S1): 158-164.
[3] 程麦理. 黄土场地桩基横向力学行为数值模拟[J]. 工程力学, 2019, 36(S1): 229-233.
[4] 王钰, 纪巧玲, 刘庆凯. 规则波作用下导桩锚泊的浮防波堤水动力特性的数值模拟[J]. 工程力学, 2019, 36(S1): 268-271,284.
[5] 曾磊, 谢炜, 郑山锁, 陈熠光, 任雯婷. T形配钢型钢混凝土柱-钢梁框架抗震性能研究[J]. 工程力学, 2019, 36(5): 157-165.
[6] 种迅, 张蓝方, 万金亮, 王德才, 叶献国, 解琳琳, 邵徽斌. 两层带开洞预制剪力墙抗震性能试验研究与数值模拟分析[J]. 工程力学, 2019, 36(5): 176-183.
[7] 陈云, 蒋欢军, 刘涛, 万志威, 鲁正. 分级屈服型金属阻尼器抗震性能研究[J]. 工程力学, 2019, 36(3): 53-62.
[8] 钟紫蓝, 王书锐, 杜修力, 李立云, 侯本伟. 管道承插式接口轴向力学性能试验研究与数值模拟[J]. 工程力学, 2019, 36(3): 224-230,239.
[9] 高良田, 王键伟, 王庆, 贾宾, 王永魁, 石莉. 破冰船在层冰中运动的数值模拟方法[J]. 工程力学, 2019, 36(1): 227-237.
[10] 李天娥, 孙晓颖, 武岳, 王长国. 平流层飞艇气动阻力的参数分析[J]. 工程力学, 2019, 36(1): 248-256.
[11] 唐琼, 李易, 陆新征, 闫维明. 多螺箍筋柱轴压承载力研究[J]. 工程力学, 2018, 35(S1): 166-171.
[12] 祝明桥, 张紫薇, 蒋俏, 石卫华. 双层交通混凝土箱梁传力路径试验研究与分析[J]. 工程力学, 2018, 35(S1): 181-187.
[13] 钱蓝萍, 李易, 陆新征, 闫维明. 小型汽车撞击后框架柱剩余承载力的数值研究[J]. 工程力学, 2018, 35(S1): 313-319.
[14] 翟金金, 董胜. 夏威夷ALEUTIAN海啸的NEOWAVES数值模拟[J]. 工程力学, 2018, 35(S1): 359-364.
[15] 吴志军, 张鹏林, 刘泉声, 李万峰, 江维中. 基于零厚度粘聚力单元的钢筋混凝土板在爆炸荷载下的动态破坏过程分析[J]. 工程力学, 2018, 35(8): 79-90,110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨健辉;宋玉普;赵东拂;邹小理. 双侧压下混凝土静态受拉与受拉疲劳性能研究[J]. 工程力学, 2005, 22(6): 134 -141 .
[2] 马辉, 李三只, 李哲, 王振山, 梁炯丰. 型钢再生混凝土柱-钢梁组合框架节点抗剪承载力研究[J]. 工程力学, 2018, 35(7): 176 -186 .
[3] 徐强, 郑山锁, 商校瑀. 近海大气环境作用下钢框架节点时变地震损伤研究[J]. 工程力学, 2019, 36(1): 61 -69 .
[4] 徐明雪, 梁兴文, 汪萍, 王照耀. 超高性能混凝土梁正截面受弯承载力理论研究[J]. 工程力学, 2019, 36(8): 70 -78 .
[5] 徐龙河, 杨雪飞. 自复位支撑-钢框架结构直接基于位移的支撑参数设计与分析[J]. 工程力学, 2019, 36(8): 141 -148 .
[6] 乔崎云, 杨兆源, 牟犇, 刘倩倩. 外环板式高低梁-方钢管柱节点弹塑性剪切承载力计算[J]. 工程力学, 2019, 36(8): 192 -200,209 .
[7] 李国强, 张卫国, 黄霞, 王勋年. 翼型动态风洞试验洞壁效应研究[J]. 工程力学, 2019, 36(8): 235 -247 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日