工程力学 ›› 2019, Vol. 36 ›› Issue (10): 104-114.doi: 10.6052/j.issn.1000-4750.2018.09.0494

• 土木工程学科 • 上一篇    下一篇

唐代殿堂型木构架柱架摇摆抗侧机理研究

王娟1,2, 崔志涵1,2, 杨庆山2,3, 杨娜1,2   

  1. 1. 北京交通大学土木建筑工程学院, 北京 100044;
    2. 北京交通大学结构风工程与城市风环境北京市重点实验室, 北京 100044;
    3. 重庆大学土木工程学院, 重庆 400044
  • 收稿日期:2018-09-09 修回日期:2018-12-12 出版日期:2019-10-25 发布日期:2019-05-18
  • 通讯作者: 王娟(1982-),女,天津人,副教授,博士,主要从事古建筑木结构健康监测及力学性能研究(E-mail:juanwang@bjtu.edu.cn). E-mail:juanwang@bjtu.edu.cn
  • 作者简介:崔志涵(1992-),男,广东人,硕士生,主要从事古建筑木结构构架及关键节点力学性能研究(E-mail:779151574@qq.com);杨庆山(1968-),男,河北人,教授,博士,博导,主要从事结构风工程和古建筑木结构研究(E-mail:qshyang@bjtu.edu.cn);杨娜(1974-),女,辽宁人,教授,博士,博导,主要从事古建筑健康监测与力学性能研究(E-mail:nyang@bjtu.edu.cn).
  • 基金资助:
    国家自然科学基金青年科学基金项目(51408038),国家自然科学基金重点项目(51338001),高等学校学科创新引智计划项目(B13002),北京市自然科学基金重点项目(8151003)

A STUDY ON HORIZONTAL RESISTANCE MECHANISM OF PALACE-STYLE WOODEN FRAME IN TANG DYNASTY

WANG Juan1,2, CUI Zhi-han1,2, YANG Qing-shan2,3, YANG Na1,2   

  1. 1. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China;
    2. Beijing's Key Laboratory of Structural Wind Engineering and Urban Wind Environment, Beijing Jiaotong University, Beijing 100044, China;
    3. School of Civil Engineering, Chongqing University, Chongqing 400044, China
  • Received:2018-09-09 Revised:2018-12-12 Online:2019-10-25 Published:2019-05-18

摘要: 唐代殿堂型木结构建筑是我国古建筑遗存中弥足珍贵的文物,其建造年代久远,数量稀少,结构形制特殊且极富时代特征,具有极其重要的历史文化与科学研究价值。其木构架由三个水平结构层——柱网层、铺作层和屋架层自下而上通过榫卯连接叠垒而成。为深入研究此类型木构架的抗侧性能,建立了某唐代殿堂型木结构一榀构架的精细化有限元足尺实体模型,并进行了水平低周反复加载模拟,系统研究了木构架的变形特点、破坏形态、滞回特性、抗侧刚度及耗能特征。结果表明在水平往复荷载作用下,殿堂型木构架的主要变形特征为柱脚无滑移偏转抬升,柱架摇摆并带动整体结构协同抬升摆动,铺作层如同刚体抬升平移,剪切变形不明显;主要破坏形式为栌斗全截面压溃和柱脚边缘压屈;构架滞回曲线呈"S"形,具有显著捏拢效应,两端较为饱满。木构架初始抗侧刚度较大,屈服后刚度退化显著,主要通过柱脚节点和柱头-栌斗节点的塑性变形、构件接触面的摩擦滑移、结构整体转动抬升摆动耗能,具有较好的抗震性能。

关键词: 古建木构架, 柱架摇摆, 抗侧机理, 铺作层, 唐代

Abstract: The palace-style wooden building in Chinese Tang dynasty has important historical, cultural and scientific values because of its long history, rare quantity and special construction. The wooden frame is composed of three horizontal structural layers, which are beam-column layer, Dou-gong layer and roof truss layer, from bottom to top connected with each other by mortise and tenon joints. A refined full-scale solid finite element model for a palace-style wooden frame in Tang dynasty is established to analyze the lateral resistance mechanism of this kind of structure. The deformation characteristics, failure modes, hysteretic curve, lateral stiffness and energy dissipation of the frame are studied through quasi static simulations. The results show that the main deformation of the frame is column rocking of the structure with cyclic uplifting of column foot joints. The Dou-Gong layer behaves as a rigid body without obvious shear deformation. The main failure modes are the collapse of Lu-dou joints and the buckling of column foot edges. The S-shaped hysteretic curve of the structure is anti-symmetric with a pinch effect. The skeleton curve has large initial lateral stiffness but with a significant degradation after yielding. The whole structure has good aseismic performances contributed from the plastic deformation of column foot and Lu-dou joints, the frictional slip between components, as well as the column rocking of the structure.

Key words: traditional wooden frame, column rocking, horizontal resistance mechanism, Dou-Gong brackets, Tang dynasty

中图分类号: 

  • TU366.2
[1] 高大峰. 中国木结构古建筑的结构及其抗震性能研究[D]. 西安:西安建筑科技大学, 2007. Gao Dafeng. A research on the structure and their aseismic characteristics of ancient chinese timber buildings[D]. Xi'an:Xi'an University of Architecture and Technology, 2007. (in Chinese)
[2] 隋䶮, 赵鸿铁, 薛建阳, 等. 古建木构铺作层侧向刚度的试验研究[J]. 工程力学, 2010, 27(3):74-78. Sui Yan, Zhao Hongtie, Xue Jianyang, et al. Experimental study on lateral stiffness of Dougong layer in Chinese historic buildings[J]. Engineering Mechanics, 2010, 27(3):74-78. (in Chinese)
[3] Chen J Y, Li T Y, Yang Q S, et al. Degradation laws of hysteretic behaviour for historical timber buildings based on pseudo-static tests[J]. Engineering Structures, 2018, 156(2018):480-489.
[4] 陈春超. 古建筑木结构整体力学性能分析和安全性评价[D]. 南京:东南大学, 2016. Chen Chunchao. Integral mechanics property analysis and safety evaluation of ancient timber structures[D]. Nanjing:Southeast University, 2016. (in Chinese)
[5] 刘妍, 杨军. 独乐寺辽代建筑结构分析及计算模型简化[J]. 东南大学学报(自然科学版), 2007, 37(5):887-891. Liu Yan, Yang Jun. Structural analysis and modeling simplification of Liao-dynasty structures in Dule Temple[J]. Journal of southeast university. 2007, 37(5):887-891. (in Chinese)
[6] Lee Y W, Hong S G, Bae B S, et al. Experiments and analysis of the traditional wood structural frame[C]//The 14th World Conference on Earthquake Engineering, Beijing, China, 2008.
[7] Ayala D F, Tsai P H. Seismic vulnerability of historic Dieh-Dou timber structures in Taiwan[J]. Engineering Structures, 2008, 30(8):2101-2113.
[8] 清华大学建筑设计研究院、北京清华城市规划设计研究院文化遗产保护研究所编著. 佛光寺东大殿建筑勘察研究报告[M]. 北京:文物出版社, 2011. Architectural design and Research Institute of Tsinghua University:Research Report on Building Investigation of the Main Hall of Fo-guang Temple[M]. Beijing:Cultural Relics Publishing House, 2011. (in Chinese)
[9] 祁伟成. 五台佛光寺东大殿[M]. 北京:文物出版社, 2012. Qi Weicheng:The main hall of Wutai fo-guang temple[M]. Beijing:Cultural Relics Publishing House, 2012. (in Chinese)
[10] 潘德华. 斗栱(上册)[M]. 南京:东南大学出版社, 2004. Pan Dehua. Dou-Gong (I)[M]. Nanjing:Southeast University Publishing House, 2004. (in Chinese)
[11] 侯幼彬, 李婉贞. 中国古代建筑历史图说[M]. 北京:中国建筑工业出版社, 2002. Hou Youbin, Li Wanzhen. The historical graph theory of ancient Chinese Architecture[M]. Beijing:China Architecture & Building Press, 2002. (in Chinese)
[12] 马炳坚. 中国古建筑木作营造技术[M]. 北京:科学出版社, 1991:126-127. Ma Bingjian. Construction technology of Chinese ancient timber structure[M]. Beijing:Science Press, 1991:126-127. (in Chinese)
[13] 陈志勇. 应县木塔典型节点及结构受力性能研究[D]. 哈尔滨:哈尔滨工业大学, 2011. Chen Zhiyong. Behaviour of typical joints and the structure of Yingxian wood pagoda[D]. Harbin:Harbin Institute of Technology, 2011. (in Chinese)
[14] 《木结构设计手册》编辑委员会. 木结构设计手册(第三版)[M]. 北京:中国建筑工业出版社, 2005. The editorial board of the wooden structure design manual. Handbook for design of wood structure (The third edition)[M]. Beijing:China Architecture & Building Press, 2005. (in Chinese)
[15] 刘大可. 古建筑屋面荷载汇编(上)[J]. 古建园林技术, 2001(3):58-64. Liu Dake. Load assembler of roofing of ancient building (The first volume)[J]. Traditional Chinese Architecture and Gardens, 2001(3):58-64. (in Chinese)
[16] 刘大可. 古建筑屋面荷载汇编(下)[J]. 古建园林技术, 2001(4):56-63. Liu Dake. Load assembler of roofing of ancient building (The second volume)[J]. Traditional Chinese Architecture and Gardens, 2001(4):56-63. (in Chinese)
[17] 贺俊筱, 王娟, 杨庆山. 摇摆状态下古建筑木结构木柱受力性能分析及试验研究[J]. 工程力学, 2017, 34(11):50-58. He Junxiao, Wang Juan, Yang Qingshan. Theoretical and Experimental analysis on mechanical behavior of column in traditional timber structure during rocking[J]. Engineering Mechanics, 2017, 34(11):50-58. (in Chinese)
[18] He Junxiao, Wang Juan. Theoretical model and finite element analysis for restoring moment at column foot during rocking[J]. Journal of Wood Science, 2018, 64(2):97-111.
[19] Masaki Maeno, Yoshiyuki Suzuki, Tatsuya Ohshita, et al. Seismic response characteristics of traditional wooden frame by full-scale dynamic and static tests[C]//The 13th World Conference on Earthquake Engineering, Vancouver, Canada, 2004.
[1] 谢启芳, 张利朋, 王龙, 崔雅珍, 杨柳洁. 拔榫状态下直榫节点滞回性能有限元分析[J]. 工程力学, 2019, 36(S1): 138-143.
[2] 贺俊筱, 王娟, 杨庆山. 摇摆状态下古建筑木结构木柱受力性能分析及试验研究[J]. 工程力学, 2017, 34(11): 50-58.
[3] 张雷, 杨娜. 均布荷载作用下榫卯连接木梁的解析解[J]. 工程力学, 2017, 34(7): 51-60,78.
[4] 谢启芳, 杜彬, 钱春宇, 郑培君, 李双, 张风亮. 古建筑木结构燕尾榫节点弯矩-转角模型研究[J]. 工程力学, 2016, 33(8): 39-44.
[5] 张宸赫, 廖红建, 钱春宇, 李杭州, 宋丽, 郑建国. 古建筑木材料拉-压疲劳试验研究[J]. 工程力学, 2016, 33(增刊): 201-206.
[6] 凌志彬, 刘伟庆, 杨会峰, 陆伟东. 考虑位置函数的胶合木植筋粘结-滑移关系研究[J]. 工程力学, 2016, 33(3): 95-103.
[7] 邹 爽;霍林生;李宏男. 用于村镇木结构建筑的新型角位移阻尼器的性能实验研究[J]. 工程力学, 2011, 28(3): 62-068.
[8] 谢启芳;赵鸿铁;薛建阳;仵建斌;隋 龑. CFRP布加固木梁界面粘结应力的试验研究和理论分析[J]. 工程力学, 2008, 25(7): 0-234,.
[9] 邵劲松;刘伟庆;蒋 桐;王曙光;周 叮. FRP加固轴心受压木柱应力-应变模型[J]. 工程力学, 2008, 25(2): 0-187.
[10] 阿斯哈, 周长东, 邱意坤, 梁立灿, 张泳. 考虑位置函数的木材表面嵌筋粘结滑移本构关系[J]. 工程力学, 2019, 36(10): 134-143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张冬娟;崔振山;李玉强;阮雪榆. 平面应变板料拉弯成形回弹理论分析[J]. 工程力学, 2007, 24(7): 0 -071 .
[2] 张伯艳;陈厚群. LDDA动接触力的迭代算法[J]. 工程力学, 2007, 24(6): 0 -006 .
[3] 李宗利;杜守来. 高渗透孔隙水压对混凝土力学性能的影响试验研究[J]. 工程力学, 2011, 28(11): 72 -077 .
[4] 姜亚洲;任青文;吴晶;杜小凯. 基于双重非线性的混凝土坝极限承载力研究[J]. 工程力学, 2011, 28(11): 83 -088 .
[5] 吴明;彭建兵;徐平;孙苗苗;夏唐代. 考虑土拱效应的挡墙后土压力研究[J]. 工程力学, 2011, 28(11): 89 -095 .
[6] 何浩祥;闫维明;陈彦江. 地震动加加速度反应谱的概念及特性研究[J]. 工程力学, 2011, 28(11): 124 -129 .
[7] 张慕宇;杨智春;王乐;丁燕. 复合材料梁结构损伤定位的无参考点互相关分析方法[J]. 工程力学, 2011, 28(11): 166 -169 .
[8] 郭佳民;董石麟;袁行飞. 随机缺陷模态法在弦支穹顶稳定性计算中的应用[J]. 工程力学, 2011, 28(11): 178 -183 .
[9] 祝效华;王宇;童华;刘应华. 基于弹塑性力学的油气井打捞公锥造扣全过程分析和评价[J]. 工程力学, 2011, 28(11): 184 -189 .
[10] 黄友钦;顾明. 风雪耦合作用下单层柱面网壳的动力稳定[J]. 工程力学, 2011, 28(11): 210 -217, .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日