工程力学 ›› 2019, Vol. 36 ›› Issue (10): 96-103,163.doi: 10.6052/j.issn.1000-4750.2018.09.0485

• 土木工程学科 • 上一篇    下一篇

不同粗糙度岩石-混凝土界面断裂特性研究

荣华1, 王玉珏1, 赵馨怡1, 佘吉2   

  1. 1. 中冶建筑研究总院有限公司, 北京 100088;
    2. 大连理工大学土木工程学院, 大连 116024
  • 收稿日期:2018-09-06 修回日期:2018-11-09 出版日期:2019-10-25 发布日期:2019-04-16
  • 通讯作者: 荣华(1985-),女,辽宁人,高工,博士,从事混凝土断裂力学及核电厂运行环境下钢筋混凝土结构耐久性研究(E-mail:ronghuakeke@163.com). E-mail:ronghuakeke@163.com
  • 作者简介:王玉珏(1985-),女,安徽人,硕士生,从事混凝土材料力学性能研究(E-mail:wangyujue@cribc.com);赵馨怡(1993-),女,陕西人,硕士生,从事混凝土材料撞击性能研究(E-mail:zhaoxinyi@cribc.com);佘吉(1992-),男,江苏扬州人,硕士生,从事混凝土断裂力学研究(E-mail:sjfeel@126.com).
  • 基金资助:
    国家自然科学基金项目(51708565)

RESEARCH ON FRACTURE CHARACTERISTICS OF ROCK-CONCRETE INTERFACE WITH DIFFERENT ROUGHNESS

RONG Hua1, WANG Yu-jue1, ZHAO Xin-yi1, SHE Ji2   

  1. 1. Central Research Institute of Building and Construction, Beijing 100088, China;
    2. School of Civil Engineering, Dalian University of Technology, Dalian 116024, China
  • Received:2018-09-06 Revised:2018-11-09 Online:2019-10-25 Published:2019-04-16

摘要: 界面粗糙度对岩石-混凝土界面断裂特性有重要影响。为研究不同粗糙度岩石-混凝土界面断裂特性,对岩石表面进行刻槽处理获得六种界面粗糙度,采用三点弯曲梁岩石-混凝土复合试件测量界面的断裂参数。运用数值方法计算了界面的起裂断裂韧度K1ini,并通过P-δ曲线计算界面的断裂能Gf。试验结果表明,所有试件都沿着界面发生破坏,说明岩石-混凝土界面相对于两侧材料属于薄弱面;采用界面刻槽的方式能够获得较大范围的粗糙度数值,当界面粗糙度Ra从0.676 mm增大到2.028 mm时,岩石-混凝土界面起裂断裂韧度KK1ini从0.362 MPa·m1/2增加到0.515 MPa·m1/2,提高了42.3%;界面断裂能Gf从17.928 N/m增加到47.802 N/m,提高了166.7%;同时,K1ini随着粗糙度的提高一直增大,而Gf随着粗糙度的提高先增大后趋于平缓。

关键词: 混凝土, 岩石, 界面, 断裂参数, 粗糙度

Abstract: The roughness of rock-concrete interface has significant effects on its fracture characteristics. To investigate the fracture characteristic of rock-concrete interface with different roughness, six kinds of interface roughnesses were prepared by mechanically cutting grooves on the rock surface and then standard three-point bending fracture tests were performed to measure the fracture parameters of rock-concrete interface. The initial fracture toughness K1ini was computed by a numerical method, and interfacial fracture energy Gf was calculated by pertinent P-δ curve. Experimental results indicate that the final crack is along rock-concrete interface, which proves that the rock-concrete interface is unsubstantial compared with bilateral materials. When interfacial roughness changes from 0.676 mm to 2.028 mm, the initial fracture toughness of rock-concrete interface increases from 0.362 MPa·m1/2 to 0.515 MPa·m1/2 (increasing 42.3%) and the fracture energy of rock-concrete interface increases from 17.928 N/m to 47.802 N/m (increasing 166.7%). In addition, with the increase of the interfacial roughness, the initial fracture toughness increases continuously, while the mode I fracture energy increases first and remains unchanged.

Key words: concrete, rock, interface, fracture parameter, roughness

中图分类号: 

  • TV313
[1] Zhong H, Ooi E T, Song C, et al. Experimental and numerical study of the dependency of interface fracture in concrete-rock specimens on mode mixity[J]. Engineering Fracture Mechanics, 2014, 124/125(9):287-309.
[2] Dong W, Wu Z, Zhou X. An experimental study on crack propagation at rock-concrete interface using digital image correlation technique[J]. Engineering Fracture Mechanics, 2017, 171:50-63.
[3] 李哲, 简政, 黄松梅. 岩石与混凝土I-Ⅱ 复合型界面裂缝临界断裂曲线的研究[C]//第6届全国结构工程学术会议论文集, 广西, 1997:557-561. Li Zhe, Jian Zheng, Huang Songmei. Research on the critical fracture curve of rock-concrete interface crack[C]//Proceedings of the 6th National Conference on Structural Engineering, Guangxi, 1997:557-561. (in Chinese)
[4] Hussein M, Marion B, Madly L. Experimental study of the shear strength of bonded concrete-rock interfaces:surface morphology and scale effect[J]. Rock Mechanics and Rock Engineering, 2017(1):1-25.
[5] 王璀瑾, 董伟, 王强, 等. 混凝土I型裂缝扩展准则比较研究[J]. 工程力学, 2016, 33(5):89-96. Wang Cuijin, Dong Wei, Wang Qiang, et al. A comparative study on propagation criterion of Concrete mode I crack[J]. Engineering Mechanics, 2016, 33(5):89-96. (in Chinese)
[6] Xu S, Reinhardt H W. Determination of double-K criterion for crack propagation in quasi-brittle fracture, Part Ⅱ:Analytical evaluating and practical measuring methods for three-point bending notched beams[J]. International Journal of Fracture, 1999, 98(2):151-177.
[7] Choubey R K, Kumar S. Simplified equations for determining double-K fracture parameters of concrete for 3-point bending test[J]. Fatigue & Fracture of Engineering Materials & Structures, 2018, 41(7):1615-1626.
[8] Dong W, Wu Z, Zhou X. Calculating crack extension resistance of concrete based on a new crack propagation criterion[J]. Construction & Building Materials, 2013, 38(2):879-889.
[9] Kishen J. Fracture of rock-concrete interfaces:laboratory tests and applications[J]. ACI Structural Journal, 2004, 101(3):325-331.
[10] 陆超, 何佳文, 董伟. 四点剪切条件下岩石-混凝土界面裂缝扩展过程研究[J]. 水利与建筑工程学报, 2015, 13(5):83-89. Lu Chao, He Jiawen, Dong Wei. Study on the crack propagation of the rock-concrete interface under four-piont shear load[J]. Journal of Water Resources and Architectural Engineering, 2015, 13(5):83-89. (in Chinese)
[11] Dong W, Wu Z, Zhou X. Fracture mechanisms of rock-concrete interface:Experimental and numerical[J]. Journal of Engineering Mechanics ASCE, 2016, 142(7):4016040.
[12] 李哲, 杨水成, 张浩博. 岩石与混凝土界面裂缝的断裂能及断裂韧度[J]. 水资源与水工程学报, 1998, 9(1):42-45. Li Zhe, Yang Shuicheng, Zhang Haobo. Fracture energy and fracture toughness of interfacial cracks between rock and concrete[J]. Journal of Water Resources and Architectural Engineering, 1998, 9(1):42-45. (in Chinese)
[13] 徐晓良, 杨树桐. 钢筋混凝土少筋梁断裂特性试验研究[J]. 工程力学, 2017, 34(增刊):239-243. Xu Xiaoliang, Yang Shutong. Experimental study on fracture behavior of lightly-reinforced concrete beam[J]. Engineering Mechanics, 2017, 34(Suppl):239-243. (in Chinese)
[14] Goszczyńska B, Świt G, Trąmpczyński W. Experimental validation of concrete crack identification and location with acoustic emission method[J]. Archives of Civil & Mechanical Engineering, 2012, 12(1):23-28.
[15] 董伟, 何化南, 吴智敏, 等. 光弹贴片法研究混凝土Ⅰ-Ⅱ复合型裂缝扩展过程[J]. 工程力学, 2010, 27(9):41-48. Dong Wei, He Huanan, Wu Zhimin, et al. Experimental investigation on double-K fracture parameters for small size specimens in concrete.[J]. Engineering Mechanics, 2010, 27(9):41-48. (in Chinese)
[16] Chen L S, Kuang J H. A displacement extrapolation method for determining the stress intensity factors along flaw border[J]. International Journal of Fracture, 1992, 57(4):51-58.
[17] Hillerborg A, Modéer M, Petersson P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement and Concrete Research, 1976, 6(6):773-781.
[18] Dong W, Wu Z, Zhou X. A comparative study on stress intensity factor-based criteria for the prediction of mixed mode I-Ⅱ crack propagation in concrete[J]. Engineering Fracture Mechanics, 2018, 197(11):217-235.
[19] 李冬, 金浏, 杜修力, 等. 考虑细观组分影响的混凝土宏观力学性能理论预测模型[J]. 工程力学, 2019, 36(5):67-75. Li Dong, Jin Liu, Du Xiuli, et al. A theoretical prediction model of concrete macroscopic mechanical properties considering of the influence of mesoscopic composition[J]. Engineering Mechanics, 2019, 36(5):67-75. (in Chinese)
[20] 董伟, 肖魁, 何化南, 等. 全级配混凝土I型裂缝扩展全过程数值模拟[J]. 工程力学, 2013, 30(4):228-234. Dong Wei, Xiao Kui, He Huanan, et al. Numerical simulation on complete process of model I crack propagation of fully-graded concrete[J]. Engineering Mechanics, 2013, 30(4):228-234. (in Chinese)
[1] 杨志坚, 韩嘉明, 雷岳强, 赵海龙, 胡嘉飞. 预应力混凝土管桩与承台连接节点抗震性能研究[J]. 工程力学, 2019, 36(S1): 248-254.
[2] 何栋尔, 章子华, 肖云逸, 罗威, 单艳玲. CFRP-火灾后混凝土界面快速剥离试验[J]. 工程力学, 2019, 36(S1): 285-292,297.
[3] 代鹏, 杨璐, 卫璇, 周宇航. 不锈钢管混凝土短柱轴压承载力试验研究[J]. 工程力学, 2019, 36(S1): 298-305.
[4] 隋䶮, 薛建阳, 董金爽, 张锡成, 谢启芳, 白福玉. 附设粘滞阻尼器的混凝土仿古建筑梁-柱节点恢复力模型试验研究[J]. 工程力学, 2019, 36(S1): 44-53.
[5] 杜春波, 王涛, 郄毅. 交替协调子结构混合试验方法研究[J]. 工程力学, 2019, 36(S1): 54-58.
[6] 林德慧, 陈以一. 部分填充钢-混凝土组合柱整体稳定分析[J]. 工程力学, 2019, 36(S1): 71-77,85.
[7] 刘兴喜, 徐荣桥. FRP加固混凝土梁粘结层剪应力分析[J]. 工程力学, 2019, 36(S1): 149-153.
[8] 关少钰, 白涌滔, 刘卫辉, 李银胜, 王伟. 基于统一强度理论的高强钢管混凝土柱压弯屈服准则[J]. 工程力学, 2019, 36(S1): 170-174,183.
[9] 徐金金, 杨树桐, 刘治宁. 碱激发矿粉海水海砂混凝土与CFRP筋粘结性能研究[J]. 工程力学, 2019, 36(S1): 175-183.
[10] 程麦理. 黄土场地桩基横向力学行为数值模拟[J]. 工程力学, 2019, 36(S1): 229-233.
[11] 梁兴文, 汪萍, 徐明雪, 于婧, 李林. 免拆UHPC模板RC梁受弯性能试验及承载力分析[J]. 工程力学, 2019, 36(9): 95-107.
[12] 田稳苓, 温晓东, 彭佳斌, 徐丽丽, 李子祥. 新型泡沫混凝土轻钢龙骨复合墙体抗剪承载力计算方法研究[J]. 工程力学, 2019, 36(9): 143-153.
[13] 覃茜, 徐千军. 成层混凝土的剪切强度和Ⅱ型断裂韧度[J]. 工程力学, 2019, 36(9): 188-196.
[14] 邓明科, 马福栋, 叶旺, 殷鹏飞. 局部采用高延性混凝土装配式框架梁-柱节点抗震性能试验研究[J]. 工程力学, 2019, 36(9): 68-78.
[15] 王威, 赵春雷, 苏三庆, 任坦, 刘格炜, 董晨阳. 带栓钉波形钢板混凝土组合构件粘结滑移性能与承载力试验研究[J]. 工程力学, 2019, 36(9): 108-119.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周小平;杨海清;张永兴. 有限宽偏心裂纹板在裂纹面受两对集中拉力作用时裂纹线的弹塑性解析解[J]. 工程力学, 2008, 25(1): 0 -027 .
[2] 张冬娟;崔振山;李玉强;阮雪榆. 平面应变板料拉弯成形回弹理论分析[J]. 工程力学, 2007, 24(7): 0 -071 .
[3] 张伯艳;陈厚群. LDDA动接触力的迭代算法[J]. 工程力学, 2007, 24(6): 0 -006 .
[4] 陈有亮;邵伟;周有成. 水饱和混凝土单轴压缩弹塑性损伤本构模型[J]. 工程力学, 2011, 28(11): 59 -063, .
[5] 吴方伯;黄海林;陈伟;周绪红;. 肋上开孔对预制预应力混凝土带肋薄板施工阶段挠度计算方法的影响研究[J]. 工程力学, 2011, 28(11): 64 -071 .
[6] 李宗利;杜守来. 高渗透孔隙水压对混凝土力学性能的影响试验研究[J]. 工程力学, 2011, 28(11): 72 -077 .
[7] 王坤;谢康和;李传勋;童磊. 特殊条件下考虑起始比降的双层地基一维固结解析解[J]. 工程力学, 2011, 28(11): 78 -082 .
[8] 姜亚洲;任青文;吴晶;杜小凯. 基于双重非线性的混凝土坝极限承载力研究[J]. 工程力学, 2011, 28(11): 83 -088 .
[9] 吴明;彭建兵;徐平;孙苗苗;夏唐代. 考虑土拱效应的挡墙后土压力研究[J]. 工程力学, 2011, 28(11): 89 -095 .
[10] 陆本燕;刘伯权;邢国华;吴涛. 桥梁结构基于性能的抗震设防目标与性能指标研究[J]. 工程力学, 2011, 28(11): 96 -103, .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日