工程力学 ›› 2019, Vol. 36 ›› Issue (10): 86-95.doi: 10.6052/j.issn.1000-4750.2018.09.0483

• 土木工程学科 • 上一篇    下一篇

跨地裂缝带支撑RC框架结构振动台试验研究

熊仲明1,2,3, 陈轩1,2,3, 王赟1,2,3,4, 熊威扬5, 张朝1,2,3   

  1. 1. 西安建筑科技大学土木工程学院, 西安 710055;
    2. 西安建筑科技大学结构工程与抗震教育部重点实验室, 西安 710055;
    3. 陕西省结构与抗震重点实验室, 西安 710055;
    4. 陕西理工大学土木工程与建筑学院, 汉中 723000;
    5. 美国加州大学洛杉矶分校, 洛杉矶 90024
  • 收稿日期:2018-09-06 修回日期:2019-03-11 出版日期:2019-10-25 发布日期:2019-06-14
  • 通讯作者: 陈轩(1990-),男,陕西人,博士生,主要从事结构抗震研究(E-mail:chenxuan@xauat.edu.cn). E-mail:chenxuan@xauat.edu.cn
  • 作者简介:熊仲明(1966-),男,湖北人,教授,博士,博导,主要从事结构抗震和防灾减灾研究(E-mail:xiongzhmgh@xauat.edu.cn);王赟(1977-),女,陕西人,副教授,博士生,主要从事混凝土结构设计研究(E-mail:274972654@qq.com);熊威扬(1996-),男,陕西人,学士,主要从事认知科学研究(E-mail:weiyang.xiong@yahoo.com);张朝(1991-),男,内蒙古人,博士生,主要从事结构抗震研究(E-mail:z_dynasty@126.com).
  • 基金资助:
    国家自然科学基金项目(51278395);陕西省自然科学基金重点项目(2018JZ5008);住建部科学技术基金项目(2016-k5-044)

RESEARCH ON SHAKING TABLE TEST OF FRAME STRUCTURE CROSSING THE GROUND FISSURE WITH BRACES

XIONG Zhong-ming1,2,3, CHEN Xuan1,2,3, WANG Yun1,2,3,4, XIONG Wei-yang5, ZHANG Chao1,2,3   

  1. 1. School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China;
    2. Key Lab of Structural Engineering and Earthquake Resistance, Ministry of Education, Xi'an 710055, China;
    3. Shaanxi Key Lab of Structure and Earthquake Resistance, Xi'an 710055, China;
    4. School of Civil Engineering and Architecture, Shaanxi University of Technology, Hanzhong 723001, China;
    5. College of Letters and Science, University of California, Los Angeles 90024, USA
  • Received:2018-09-06 Revised:2019-03-11 Online:2019-10-25 Published:2019-06-14

摘要: 研究跨地裂缝结构在地震作用下的灾害控制措施,以一个跨越西安f4地裂缝的5层RC框架结构为研究对象,通过对非一致性地震激励下跨地裂缝无支撑结构和不同布置形式的带支撑结构进行数值分析对比,找出了跨地裂缝结构的薄弱位置,确定了合理的支撑布置方案,并以此为依据设计并完成了一个缩尺比为1:15的跨地裂缝带支撑结构振动台试验,分析了不同工况下跨地裂缝带支撑结构的抗震性能,得到了该结构在不同地震激励下的破坏形态、动力特性和动力响应规律。研究结果表明:地裂缝的存在增大了跨地裂缝结构的动力响应,且上盘对结构的影响大于下盘;该支撑布置提高了跨地裂缝结构的抗侧刚度,减小了结构在地裂缝和地震共同作用下的动力反应;同时,支撑在结构破坏前发生屈服,其屈服变形不仅耗散了地震能量,降低了结构损伤,而且实现了多道抗震设防,使跨地裂缝结构得到了有效保护。该研究成果为跨越地裂缝结构灾害控制提供了科学依据。

关键词: 跨地裂缝结构, 钢支撑, 振动台, 土与结构共同作用, 抗震性能, 灾害控制

Abstract: To study the measures of disaster control for the structure crossing a ground fissure with steel braces, a 5 story RC frame crossing a ground fissure f4 was taken as an example. A finite element analysis was carried out on structures without steel braces and those with different arrangements of steel braces. The weak part of the structure crossing a ground fissure was found and the scheme of arrangement for the test was determined. The shaking table test on a 1:15 scaled model structure crossing a ground fissure with braces was designed and tested. The aseismic behavior of the structure was analyzed in different cases. The dynamic characteristics, dynamic responses and failure mechanism of the structure under different excitations were obtained from the test. The research shows that the ground fissure site enhanced the dynamic response of the structure under an earthquake, and the impact from the hanging-wall was greater than that from the footwall. The steel braces used in this scheme provided lateral stiffness for the structure, and they reduced the dynamic response of the structure under the combined action of a ground fissure and an earthquake. The braces yielded before the structural members was destroyed, which dissipated earthquake input energy through their deformation and reduced structural damage. This indicated that the brace of a structure has a multiple aseismic fortification function so that the structure crossing the ground fissure was protected effectively. The research results provide a scientific basis for the disaster control of structures crossing ground fissures.

Key words: structures crossing the ground fissure, steel braces, shaking table, soil-structure-interaction, seismic behavior, disaster control

中图分类号: 

  • TU375.4
[1] Ayalew L, Yamagishi H, Reik G. Ground cracks in Ethiopian Rift Valley:Facts and uncertainties[J]. Engineering Geology, 2004, 75(3/4):309-324.
[2] Sancio R B, Bray J D, Stewart J P, et al. Correlation between ground failure and soil conditions in Adapazari, Turkey[J]. Soil Dynamics & Earthquake Engineering, 2002, 22(9/10/11/12):1093-1102.
[3] Jachens R C, Holzer T L. Differential compaction mechanism for earth fissures near Casa Grande, Arizona[J]. Geological Society of America Bulletin, 1982, 93(10):998-1012.
[4] Budhu M, Adiyaman I. Earth fissure formation from groundwater pumping and the influence of a stiff upper cemented layer[J]. Quarterly Journal of Engineering Geology & Hydrogeology, 2012, 45(2):197-205.
[5] Xu L Q, Li S Z, Cao X Z, et. al. Holocene intracontinental deformation of the northern North China Plain:Evidence of tectonic ground fissures[J]. Journal of Asian Earth Sciences, 2016, 119(1):49-64.
[6] Peng J B, Huang Q B, Hu Z P, et al. A proposed solution to the ground fissure encountered in urban metro construction in Xi'an, China[J]. Tunnelling & Underground Space Technology Incorporating Trenchless Technology Research, 2017, 61(9):12-25.
[7] Wang Z F, Shen S L, Cheng W C, et al. Ground fissures in Xi'an and measures to prevent damage to the Metro tunnel system due to geohazards[J]. Environmental Earth Sciences, 2016, 75(6):511.
[8] Liu N N, Huang Q B, Ma Y, et al. Experimental study of a segmented metro tunnel in a ground fissure area[J]. Soil Dynamics & Earthquake Engineering, 2017, 100(6):410-416.
[9] 熊仲明, 陈轩, 高鹏翔, 等. 在高烈度地震作用下跨越地裂缝框架结构的动力响应模拟研究[J]. 西安建筑科技大学学报(自然科学版), 2016, 48(6):783-789. Xiong Zhongming, Chen Xuan, Gao Pengxiang, et al. Study on simulation of dynamic response of the structure crossing ground fissure in high-intensity of earthquake[J]. Journal of Xi'an University of Architecture & Technology, 2016, 48(6):783-789. (in Chinese)
[10] 熊仲明, 韦俊, 郭亚雷, 等. 非一致性地震作用下跨越地裂缝结构的动力响应研究[J]. 振动与冲击, 2018, 37(4):197-202. Xiong Zhongming, Wei Jun, Guo Yalei, et al. A study on the dynamic response of structures across ground fissures under non-uniform seismic[J]. Journal of Vibration and Shock, 2018, 37(4):197-202. (in Chinese)
[11] 熊仲明, 韦俊, 陈轩, 等. 跨越地裂缝框架结构振动台试验及数值模拟研究[J]. 工程力学, 2018, 35(5):214-222. Xiong Zhongming, Wei Jun, Chen Xuan, et al. Research on shaking table test and numerical modelling of frame structure crossing the ground fissure[J]. Engineering Mechanics, 2018, 35(5):214-222. (in Chinese)
[12] 汪梦甫, 王义俊. 高阻尼混凝土带钢板暗支撑双肢剪力墙抗震性能试验研究[J]. 工程力学, 2017, 34(1):204-212. Wang Mengfu, Wang Yijun. Study on seismic performance of high damping concrete coupled shear walls with concealed steel plate bracings[J]. Engineering Mechanics, 2017, 34(1):204-212. (in Chinese)
[13] 吴克川, 陶忠, 宫海, 等. 钢筋混凝土框架结构防屈曲支撑加固振动台试验研究[J]. 建筑结构学报, 2015, 36(9):18-28. Wu Kechuan, Tao Zhong, Gong Hai, et al. Shaking table test on RC frame structure with buckling restrained braces[J]. Journal of Building Structures, 2015, 36(9):18-28. (in Chinese)
[14] 石永久, 熊俊, 王元清, 等. 多层钢框架偏心支撑的抗震性能试验研究[J]. 建筑结构学报. 2010, 31(2):29-34. Shi Yongjiu, Xiong Jun, Wang Yuanqing, et al. Experimental studies on seismic performance of multi-storey steel frame with eccentric brace[J]. Journal of Building Structures, 2010, 31(2):29-34. (in Chinese)
[15] 彭建兵. 西安地裂缝灾害[M]. 北京:科学出版社, 2012:318-327. Peng Jianbing. Disaster of the ground fissures in Xi'an[M]. Beijing:Science Press, 2012:318-327. (in Chinese)
[16] 魏彩萍, 王涤, 王冬冬. 唐延路地下人防工程岩土工程地勘报告[R]. 西安:西北综合勘测设计研究院, 2013. Wei Caiping, Wang Di, Wang Dongdong. The geotechnical investigation report of underground civil air defense engineering of TangYan Road[R]. Xi'an:Northwest Research Institute of Engineering Investigations and Design, 2013. (in Chinese)
[17] 赵武胜, 陈卫忠, 郑朋强, 等. 地下工程数值计算中地震动输入方法选择及实现[J]. 岩石力学与工程学报, 2013, 32(8):1579-1587. Zhao Wusheng, Chen Weizhong, Zheng Pengqiang et al. Choice and implementation of seismic wave input method in numerical calculation for underground engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(8):1579-1587. (in Chinese)
[18] 曹海韵, 潘鹏, 叶列平. 基于推覆分析混凝土框架摇摆墙结构抗震性能研究[J]. 振动与冲击, 2011, 30(11):240-244. Cao Haiyun, Pan Peng, Ye Lieping. Pushover analysis of RC frame rocking wall structure[J]. Journal of Vibration and Shock, 2011, 30(11):240-244. (in Chinese)
[19] GB 50011-2010, 建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50011-2010, Code for seismic design of buildings[S]. Beijing:China Architecture & Building Press, 2010. (in Chinese)
[20] 冯玉龙, 吴京, 孟少平. 屈曲约束支撑框架的支撑布置原则研究[J]. 工程力学. 2016, 33(12):104-111. Feng Yulong, Wu Jing, Meng Shaoping. Research on layout principle of braces for buckling-restrained braced frames[J]. Engineering Mechanics, 2016, 33(12):104-111. (in Chinese)
[21] 张家广, 吴斌, 赵俊贤. 防屈曲支撑加固钢筋混凝土框架的实用设计方法[J]. 工程力学, 2018, 35(3):151-158. Zhang Jiaguang, Wu Bin, Zhao Junxian. A practical design method of reinforced concrete frames retrofitted with buckling-restrained braces[J]. Engineering Mechanics, 2018, 35(3):151-158. (in Chinese)
[22] 李昌平, 刘伟庆, 王曙光, 等. 软土地基上高层隔震结构模型振动台试验研究[J]. 建筑结构学报, 2013, 34(7):72-78. Li Changping, Liu Weiqing, Wang Shuguang, et al. Shaking table test on high-rise isolated structure on soft soil foundation[J]. Journal of Building Structures, 2013, 34(7):72-78. (in Chinese)
[23] 熊仲明, 张朝, 霍晓鹏, 等. 地裂缝场地加速度响应振动台试验研究[J]. 岩土工程学报, 2018, 40(3):520-526. Xiong Zhongming, Zhang Chao, Huo Xiaopeng, et al. Shaking table tests on acceleration response of ground fissure site[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3):520-526. (in Chinese)
[1] 李达, 牟在根. 内嵌VV-SPSW平面钢框架结构抗震性能研究[J]. 工程力学, 2019, 36(S1): 210-216.
[2] 杨志坚, 韩嘉明, 雷岳强, 赵海龙, 胡嘉飞. 预应力混凝土管桩与承台连接节点抗震性能研究[J]. 工程力学, 2019, 36(S1): 248-254.
[3] 张浩, 连鸣, 苏明周, 程倩倩, 关彬林. 含可更换剪切型耗能梁段-高强钢组合框筒结构静力弹塑性数值分析[J]. 工程力学, 2019, 36(S1): 78-85.
[4] 田英鹏, 徐丹, 周惠蒙, 王涛. 对风力发电机塔架施工阶段TMD阻尼器的研究[J]. 工程力学, 2019, 36(S1): 184-188.
[5] 邓明科, 马福栋, 叶旺, 殷鹏飞. 局部采用高延性混凝土装配式框架梁-柱节点抗震性能试验研究[J]. 工程力学, 2019, 36(9): 68-78.
[6] 赵宪忠, 戴柳丝, 黄兆祺, 任重. 钢货架结构研究现状与关键技术[J]. 工程力学, 2019, 36(8): 1-15.
[7] 孟栋梁, 杨孟刚, 费凡. 碰撞对高铁简支桥梁横向地震响应影响的振动台试验研究[J]. 工程力学, 2019, 36(8): 161-170,181.
[8] 袁辉辉, 吴庆雄, 陈宝春, 蔡慧雄. 平缀管式钢管混凝土格构柱拟动力试验研究[J]. 工程力学, 2019, 36(7): 67-78.
[9] 侯立群, 闫维明, 陈适才, 陆新征. 内置角钢改进夹心节点抗震性能研究与抗剪承载力计算[J]. 工程力学, 2019, 36(7): 79-88.
[10] 邓明科, 董志芳, 杨铄, 王露, 周铁钢. 高延性混凝土加固震损砌体结构振动台试验研究[J]. 工程力学, 2019, 36(7): 116-125.
[11] 王宇航, 刘元九, 周绪红. 腹板屈曲约束钢连梁抗震性能研究[J]. 工程力学, 2019, 36(6): 49-59,69.
[12] 杨参天, 解琳琳, 李爱群, 陈越. 足尺空腔式RC框架柱抗震性能试验研究[J]. 工程力学, 2019, 36(6): 60-69.
[13] 牟犇, 王君昌, 崔瑶, 庞力艺, 松尾真太朗. 一种改进型方钢管柱与钢梁连接节点抗震性能研究[J]. 工程力学, 2019, 36(6): 164-174.
[14] 曾磊, 谢炜, 郑山锁, 陈熠光, 任雯婷. T形配钢型钢混凝土柱-钢梁框架抗震性能研究[J]. 工程力学, 2019, 36(5): 157-165.
[15] 种迅, 张蓝方, 万金亮, 王德才, 叶献国, 解琳琳, 邵徽斌. 两层带开洞预制剪力墙抗震性能试验研究与数值模拟分析[J]. 工程力学, 2019, 36(5): 176-183.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张冬娟;崔振山;李玉强;阮雪榆. 平面应变板料拉弯成形回弹理论分析[J]. 工程力学, 2007, 24(7): 0 -071 .
[2] 张伯艳;陈厚群. LDDA动接触力的迭代算法[J]. 工程力学, 2007, 24(6): 0 -006 .
[3] 吴方伯;黄海林;陈伟;周绪红;. 肋上开孔对预制预应力混凝土带肋薄板施工阶段挠度计算方法的影响研究[J]. 工程力学, 2011, 28(11): 64 -071 .
[4] 李宗利;杜守来. 高渗透孔隙水压对混凝土力学性能的影响试验研究[J]. 工程力学, 2011, 28(11): 72 -077 .
[5] 左志亮;蔡健;钟国坤;杨春;. 带约束拉杆T形截面钢管内核心混凝土的等效单轴本构关系[J]. 工程力学, 2011, 28(11): 104 -113 .
[6] 何浩祥;闫维明;陈彦江. 地震动加加速度反应谱的概念及特性研究[J]. 工程力学, 2011, 28(11): 124 -129 .
[7] 李忠献,黄 信. 行波效应对深水连续刚构桥地震响应的影响[J]. 工程力学, 2013, 30(3): 120 -125 .
[8] 张慕宇;杨智春;王乐;丁燕. 复合材料梁结构损伤定位的无参考点互相关分析方法[J]. 工程力学, 2011, 28(11): 166 -169 .
[9] 尚仁杰;郭彦林;吴转琴;张心斌;孙文波. 基于索合力线形状的车辐式结构找形方法[J]. 工程力学, 2011, 28(11): 145 -152 .
[10] 王伟;蔡永梅;谢禹钧. 椭圆形截面管环向裂纹应力强度因子分析方法[J]. 工程力学, 2011, 28(11): 197 -201 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日