工程力学 ›› 2019, Vol. 36 ›› Issue (9): 247-256.doi: 10.6052/j.issn.1000-4750.2018.09.0482

• 其他工程学科 • 上一篇    

潜堤上孤立波传播的格子Boltzmann法数值模拟

韩新宇, 董胜, 崔俊男   

  1. 中国海洋大学工程学院, 山东, 青岛 266100
  • 收稿日期:2018-09-06 修回日期:2018-12-05 出版日期:2019-09-25 发布日期:2019-04-16
  • 通讯作者: 董胜(1968-),男,山东青岛人,教授,博士,博导,从事海洋工程环境及其与结构相互作用研究(E-mail:dongsh@ouc.edu.cn). E-mail:dongsh@ouc.edu.cn
  • 作者简介:韩新宇(1994-),男,山东青岛人,硕士生,主要从事海岸工程及其与海洋环境的相互作用研究(E-mail:hanxinyu_ouc@163.com);崔俊男(1993-),男,河南安阳人,博士,主要从事海岸工程及其与海洋环境的相互作用研究(E-mail:cuijunnan0614@163.com).
  • 基金资助:
    国家自然科学基金委员会-山东省人民政府联合基金项目(U1706226)

NUMERICAL STUDY OF THE INTERACTION BETWEEN A SOLITARY WAVE AND SUBMERGE BREAKWATER BASED ON LATTICE BOLTZMANN METHOD

HAN Xin-yu, DONG Sheng, CUI Jun-nan   

  1. College of Engineering, Ocean University of China, Qingdao, Shandong 266100, China
  • Received:2018-09-06 Revised:2018-12-05 Online:2019-09-25 Published:2019-04-16

摘要: 基于格子Boltzmann法建立求解不可压缩的Navier-Stokes方程的数学模型,对孤立波与矩形潜堤和半圆形潜堤的相互作用过程进行了研究。通过建立二维数值水槽,采用Rayleigh推板造波,模拟了孤立波越过潜堤的过程。通过模拟速度场和自由表面,证明该模型能很好地模拟流动的分离和涡流的产生,结果与已有实验数据吻合。研究表明该模型能够模拟孤立波与潜堤相互作用中的水流分离、涡流产生、波浪破碎和传播等非线性现象。所得结论对于潜堤工程设计具有参考价值。

关键词: 格子Boltzmann法, 二维数值水槽, 孤立波, 矩形潜堤, 半圆形潜堤

Abstract: The interaction between a solitary wave and submerge breakwater, the section of which is rectangle or semicircular cylinder, is investigated based on lattice Boltzmann method. By establishing 2D numerical wave tank and making solitary wave by Rayleigh method, the process of interaction between solitary wave and submerge breakwater is studied. Numerical simulation of flow velocity fields and free surface show that this model can simulate the flow separation and vortex generation. Agreement is obtained by comparing the simulated and experimental results. The results reveal that the proposed model based on LBM can reproduce the nonlinear phenomena of wave transmission such as flow separation, vortex generation, wave breaking and propagating. The results can provide reference for submerge breakwater design in costal engineering.

Key words: lattice Boltzmann method, 2D numerical wave tank, solitary wave, submerged vertical breakwater, submerged semicircular breakwater

中图分类号: 

  • U656.2
[1] 王浩霖, 张华昌, 董胜. 直立堤上任意方向入射波的波压力研究[J]. 工程力学, 2018, 35(5):246-256. Wang Haolin, Zhang Huachang, Dong Sheng. A study on arbitrary incident wave pressure on vertical breakwaters[J]. Engineering Mechanics, 2018, 35(5):246-256. (in Chinese)
[2] 马小舟, 马玉祥, 朱小伟. 波浪在潜堤上传播的非线性参数分析[J]. 工程力学, 2016, 33(9):235-241. Ma Xiaozhou, Ma Yuxiang, Zhu Xiaowei. Analysis of wave nonlinear parameters for waves transformation over a submerged bar[J]. Engineering Mechanics, 2016, 33(9):235-241. (in Chinese)
[3] Beji S, Battjes J A. Experimental investigations of wave propagation over a bar[J]. Coastal Engineering, 1993, 19(1/2):151-162.
[4] Cho Y S, Lee J I, Kim Y T. Experimental study of strong reflection of regular water waves over submerged breakwaters in tandem[J]. Ocean Engineering, 2004, 31:1325-1335.
[5] Jeng D S, Schacht C, Lemckert G. Experimental study on ocean waves propagating over a submerged breakwater in front of a vertical seawall[J]. Ocean Engineering, 2005, 32:2231-2240.
[6] 陈杰. 波浪在斜坡上的传播变形及与潜堤相互作用研究[D]. 湖南:长沙理工大学, 2008:63-77. Chen Jie. Study of wave propagation and interactions between wave and submerged breakwater on the sloping bed[D]. Hunan:Changsha University if Science & Techonology, 2008:63-77. (in Chinese)
[7] Cooker M J, Peregrine D H, Vidal C, et al. The interaction between a solitary wave and a submerged semicircular cylinder[J]. Journal of Fluid Mechanics, 2006, 215:1-22.
[8] Chian C, Ertekin R C. Diffraction of solitary waves by submerged horizontal cylinders[J]. Wave Motion, 1992, 15(2):121-142.
[9] Ohyama T, Nadaoka K. Transformation of nonlinear wave train passing over submerged shelf without breaking[J]. Coastal Engineering, 1994, 24(1/2):1-22.
[10] Casulli V A. semi-implicit finite difference method for non-hydrostatic, free surface flows[J]. International Journal for Numerical Methods in Fluids, 1999, 30:425-440.
[11] Hur D S, Mizutani N. Numerical estimation of the wave forces acting on a three dimensional body on submerged breakwater[J]. Coastal Engineering, 2003, 47(3):329-345.
[12] Garcia N, Lara J, Losada I. 2-D numerical analysis of near-field flow at low crested permeable breakwaters[J]. Coastal Engineering, 2004, 51(10):991-1020.
[13] Peng W, Lee K H, Mizutani N. Application of direct-forcing IB-VOF method to the simulation of wave deformation by submerged structures[J]. Journal of Coastal Research, 2012, 28(3):658-670.
[14] Beji S, Battjes J A. Numerical simulation of nonlinear wave propagation over a bar[J]. Coastal Engineering, 1994, 23(1/2):1-16.
[15] Nwogu O. Alternative form of Boussinesq equations for nearshore wave propagation[J]. Journal of Waterway, Port, Coastal and Ocean Engineering, 1993, 119(6):618-638.
[16] Gobbi M F, Kirby J T. Wave evolution over submerged sills:tests of a high-oeder Boussinesq model[J]. Coastal Engineering, 1999, 37(1):57-96.
[17] Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1):201-225.
[18] 李元. 格子Boltzmann方法的应用研究[D]. 安徽:中国科学技术大学, 2009:11-20. Li Yuan. The application of Lattice Boltzmann Method[D]. Anhui:University of Science and Technology of China, 2009:11-20. (in Chinese)
[19] Qian Y H, Dhumieres D, Lallemand P. Lattice BGK models for Navier-Stokes equation[J]. Europhysics Letters, 1992,17:472-484.
[20] He X, Luo L S. Lattice Boltzmann model for the incompressible Navier-Stokes equation[J]. Journal of Statistical Physics, 1997, 88(3/4):927-944.
[21] Guo Z L, Shi B C, Wang N C. Lattice BGK model for incompressible Navier-Stokes equation[J]. Journal of Computational Physics, 2000, 165(1):288-306.
[22] Canelas R B, Ricardo A M, Ferreira R M L. Hunting for lagrangian coherent structures:SPH-LES turbulence simulations with wall-adapting local eddy viscosity (WALE) model[C]. Munich:11th international SPHERIC workshop, 2016.
[23] Korner C, Thies M, Hofmann T. Lattice boltzmann model for free surface flow for modeling foaming[J]. Journal of Statistical Physics, 2005, 102(1/2):179-196.
[24] Shih T H, Povinelli L A, Liu N S. A generalized wall function[M]. USA:NASA, 1999:3-5.
[25] Katell G, Eric B. Accuracy of solitary wave generation by a piston wave maker[J]. Journal of Hydraulic Research, 2002, 40(3):321-331.
[26] Wang J D, He G H, You R. Numerical study on interaction of a solitary wave with the submerged obstacle[J]. Ocean Engineering, 2018, 158(15):1-14.
[27] Zhuang F, Lee J J. A viscous rotational model for wave overtopping over marine structure[C]. Florida:Proceedings of the 25th International Conference on Coastal Engineering, 1996:2178-2191.
[28] Chang K A, Hsu T J, Liu P L F. Vortex generation and evolution in water waves propagating over a submerged rectangular obstacle[J]. Coastal Engineering, 2001, 44(1):13-36.
[29] Ji Q L, Zhao X Z, Dong S. Wave transformation over submerged breakwaters by the constrained interpolation profile method[J]. Ocean Engineering, 2017, 136(15):294-303.
[30] Jiang X L, Zou Q P, Zhang N. Wave load on submerged quarter-ciecular and semicircular breakwaters under irregular waves[J]. Coastal Engineering, 2017, 121:267-277.
[31] Yuan D K, Tao J H. Wave forces on submerged, alternately submerged, and emerged semicircular breakwaters[J]. Coastal Engineering, 2003, 48(2):75-93.
[32] Liu Y, Li H J. Analysis of oblique wave interaction with a submerged perforated semicircular breakwater[J]. Journal of Engineering Mathematics, 2013, 83(1):23-36.
[1] 陆小刚;陈材侃. 孤立波入射垂直壁的数值模拟及壁面波浪载荷分析[J]. 工程力学, 1992, 9(4): 113-122.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李忠献,黄 信. 行波效应对深水连续刚构桥地震响应的影响[J]. 工程力学, 2013, 30(3): 120 -125 .
[2] 童育强;向天宇;赵人达. 基于退化理论的空间梁单元有限元分析[J]. 工程力学, 2006, 23(1): 33 -37 .
[3] 罗冠炜;张艳龙;谢建华. 多自由度含间隙振动系统周期运动的二重Hopf分岔[J]. 工程力学, 2006, 23(3): 37 -43,6 .
[4] 李庆祥;孙炳楠;. 均匀流场中小曲率薄膜的气动稳定性分析[J]. 工程力学, 2006, 23(4): 39 -44,5 .
[5] 李华波;许金泉;杨震. 等厚双层涂层材料受切向集中力作用的三维理论解[J]. 工程力学, 2006, 23(4): 45 -51 .
[6] 丁洁玉;潘振宽. 基于二阶常微分方程的多体系统动力学设计灵敏度分析的伴随变量方法[J]. 工程力学, 2006, 23(2): 56 -59 .
[7] 许琪楼;王海. 板柱结构矩形弹性板弯曲精确解法[J]. 工程力学, 2006, 23(3): 76 -81 .
[8] 杨勇;郭子雄;聂建国;赵鸿铁. 型钢混凝土结构ANSYS数值模拟技术研究[J]. 工程力学, 2006, 23(4): 79 -85,5 .
[9] 罗冠炜;褚衍东;谢建华. 多自由度含间隙振动系统周期运动的Hopf-pitchfork余维二分岔[J]. 工程力学, 2006, 23(1): 99 -106 .
[10] 曹伟;宋玉普;刘海成. 混凝土三轴变幅拉-压疲劳性能试验研究[J]. 工程力学, 2006, 23(3): 111 -117, .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日