工程力学 ›› 2019, Vol. 36 ›› Issue (9): 169-179.doi: 10.6052/j.issn.1000-4750.2018.08.0471

• 土木工程学科 • 上一篇    下一篇

考虑频率参数协调的频率相关等效线性化方法

王笃国1, 赵成刚2   

  1. 1. 中国地震灾害防御中心, 北京 100029;
    2. 北京交通大学土建学院, 北京 100044
  • 收稿日期:2018-08-30 修回日期:2018-12-17 出版日期:2019-09-25 发布日期:2019-04-16
  • 通讯作者: 王笃国(1979-),男,山东人,副研究员,博士,主要从事土动力学和场地地震反应分析方法研究(E-mail:wangduguo@163.com). E-mail:wangduguo@163.com
  • 作者简介:赵成刚(1955-),男,黑龙江人,教授,博士,博导,主要从事土动力学和防灾减灾研究(E-mail:cgzhao@bjtu.edu.cn).
  • 基金资助:
    中国地震局地震科技星火计划攻关项目(XH18060);国家重点研发计划项目(2017YFC1500403-07);国家自然科学基金项目(51478135)

FREQUENCY-DEPENDENT EQUIVALENT LINEAR METHOD FOR SEISMIC SITE RESPONSE CONSIDERING THE COMPATIBILITY OF FREQUENCY PARAMETERS

WANG Du-guo1, ZHAO Cheng-gang2   

  1. 1. China Earthquake Disaster Prevention Center, Beijing 100029, China;
    2. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
  • Received:2018-08-30 Revised:2018-12-17 Online:2019-09-25 Published:2019-04-16

摘要: 基于土动力试验呈现出的土体动参数频率相关特性,结合一维等效线性化理论,建立了能够考虑动三轴或共振柱测试频率Rf和波速测试频率fvs)相协调的频率相关等效线性化方法。首先,基于国内外不同学者的试验结果,回归建立了土体剪切模量-频率和阻尼比-频率关系式,推导得到了规准化频率相关土体剪切模量比和阻尼比随剪应变变化关系式;其次,对频率无关等效线性化方法进行了改进,传递函数采用频率相关的剪切模量和阻尼比,建立了频率相关的等效线性化方法;最后,采用频率相关和频率无关等效线性化方法,分别对单层覆盖层均质线性场地和单层覆盖层非线性场地进行了不同工况下的土层地震反应分析计算,计算结果表明:1)试验室土动力性能参数测试频率Rf对地震响应影响较大,波速测试频率fvs)影响较小;2)采用动三轴试验给出的土动参数,频率相关方法得到的结果略低于频率无关方法结果。采用共振柱试验给出的土动参数,频率相关方法得到的结果大幅高于频率无关方法结果。

关键词: 频率相关, 等效线性化, 剪切模量, 阻尼比, 地震响应

Abstract: Based on frequency-dependent soil behavior demonstrated by laboratory tests and equivalent linearization theory, 1D frequency-dependent equivalent linear method for seismic site response is established, considering the parameter compatibility between the frequency Rf for laboratory dynamic tri-axial test or resonant column test and the frequency f(vs) for shear wave test. Firstly, using the laboratory results given by researchers, the frequency-dependent soil constitute models are proposed through data regression methods, and the formula describing normalized frequency-dependent shear modulus reduction and damp ratio curves with shear strain are deduced. Then, frequency-dependent equivalent linear method is developed by employing frequency-dependent shear modulus and damp ratio in transfer function for the frequency-independent equivalent linear method. Lastly, by using frequency-dependent and frequency-independent methods, linear response for a single-layered site and nonlinear response for another single-layered site under different cases are conducted, and results show that:1) laboratory test frequency Rf has a great impact on site response and shear wave test frequency f(vs) has a minor effect on site response; 2) if the input parameters of shear modulus and damp ratio are obtained by dynamic tri-axial tests, the results obtained by frequency-dependent methods are slightly lower than that obtained by frequency-independent methods; if the parameters are obtained by resonant column tests, the results obtained by frequency-dependent methods are much higher than that obtained by frequency-independent methods.

Key words: frequency-dependent, equivalent linear method, shear modulus, damping ratio, seismic response

中图分类号: 

  • P315.9
[1] Chin B H, Aki K. Simultaneous study of the source, path, and site effects on strong ground motion during the 1989 Loma Prieta earthquake:a preliminary result on pervasive nonlinear site effects[J]. Bulletin of the Seismological Society of America, 1991, 81(5):1859-1884.
[2] Field E H, Johnson P A, Beresnev I A, et al. Nonlinear ground-motion amplification by sediments during the 1994 Northridge earthquake[J]. Nature, 1997, 390(6660):599-602.
[3] Beresnev I A, Atkinson G M. Stochastic finite-fault modeling of ground motions from the 1994 Northridge, California, earthquake. I. Validation on rock sites[J]. Bulletin of the Seismological Society of America, 1998, 88(6):1392-1401.
[4] Kwok A O L, Stewart J P, Hashash Y M A. Nonlinear ground-response analysis of Turkey flat shallow stiff-soil site to strong ground motion[J]. Bulletin of the Seismological Society of America, 2008, 98(1):331-343.
[5] Elia G, Rouainia M, Karofyllakis D, et al. Modelling the non-linear site response at the LSST down-hole accelerometer array in Lotung[J]. Soil Dynamics and Earthquake Engineering, 2017, 102:1-14.
[6] Schnabel P B, Lysmer J, Seed H B. SHAKE:A computer program for earthquake response analysis of horizontally layered sites[R]. EERC Report 72-12, Berkeley, University of California, Berkeley, 1972.
[7] Streeter V L, Wylie E B, Richart F E. Soil Motion computations by characteristics method[J]. ASCE Journal of the Geotechnical Engineering Division, 1974, 100(3):247-263.
[8] Lee M K W, Finn W D L. DESRA-1 Program for the dynamic effective stress response analysis of soil deposits including liquefaction evaluation[R]. Soils Mechanics No. 36, Vancouner, Department of Civil Engineering, University of British Columbia, Canada, 1975.
[9] Idriss I M, Dobry R M, Doyle E H, et al. Behavior of soft clays under earthquake loading conditions[C]. Houston, ASCE Offshore Technology Conference, 1976:605-616.
[10] Joyner W B. A fortran program for calculating nonlinear seismic ground response[R]. Reston:US Geological Survey, 1977:77-671.
[11] Lam I, Tsai C-F, Martin G R. Determination of site dependent spectra using nonlinear analysis[C]. San Francisco, Second International Conference on Microzonation, 1978:1089-1104.
[12] Lee M K W, Finn W D L. DESRA-2:Dynamic effective stress response analysis of soil deposits with energy transmitting boundary including assessment of liquefaction potential[R]. Soils Mechanics No. 36, Vancouner:Department of Civil Engineering, University of British Columbia, Canada, 1975.
[13] 李小军. 非线性土层地震反应分析的一种方法[J]. 华南地震, 1992, 12(4):1-8. Li Xiaojun. A method for analyzing seismic response of nonlinear soil layers[J]. South China Journal of Seismology, 1992, 12(4):1-8. (in Chinese)
[14] Kausel E, Assimaki D. Seismic simulation of inelastic soils via frequency-dependent moduli and damping[J]. Journal of Engineering Mechanics, 2002, 128(1):34-47.
[15] Yoshida N, Kobayashi S, Suetomi I. Equivalent linear method considering frequency dependent characteristics of stiffness and damping[J]. Soil Dynamics and Earthquake Engineering, 2002, 22(3):205-222.
[16] 蒋通, 邢海灵. 水平土层地震反应分析考虑频率相关性的等效线性化方法[J]. 岩土工程学报, 2007, 29:218-224. Jian Tong, Xing Hailing. An equivalent linear method considering frequency-dependent soil properties for seismic response analysis[J]. Chinese Journal of Geotechnical Engineering, 2007, 29:218-224. (in Chinese)
[17] Park D P, Hashash Y M A. Rate-dependent soil behavior in seismic site response analysis[J]. Canadian Geotechnical Journal, 2008, 45(4):454-469.
[18] 王伟, 刘必灯, 周正华, 等. 刚度和频率相关的等效线性化方法[J]. 岩土力学, 2010, 31:3928-3933. Wang Wei, Liu Bideng, Zhou Zhenghua, et al. Equivalent linear method considering frequency dependent stiffness and damping[J]. Rock and Soil Mechanics, 2010, 31(12):3928-3933. (in Chinese)
[19] 袁晓铭, 李瑞山, 孙锐. 新一代土层地震反应分析方法[J]. 土木工程学报, 2016, 49(10):95-102. Yuan Xiaoming, Li Ruishan, Sun Rui. A new generation method for earthquake response analysis of soil layers[J]. China Civil Engineering Journal, 2016, 49(10):95-102. (in Chinese)
[20] 张季, 梁建文, 巴振宁. 水平层状饱和场地地震响应分析的等效线性化方法[J]. 工程力学, 2016, 33(10):52-61. Zhang Ji, Liang Jianwen, Ba Zhenning. Equivalent linear analysis of seismic response of horizontally layered fluid-saturated poroelastic half-space[J]. Engineering Mechanics, 2016, 33(10):52-61. (in Chinese)
[21] Huang D, Wang G, Wang C, et al. A modified frequency-dependent equivalent linear method for seismic site response analyses and model validation using kik-net borehole arrays[J]. Journal of Earthquake Engineering, 2018, 3:1-18.
[22] Kim D S, Stokoe K H, Hudson W R. Deformational characteristics of soils at small to intermediate strains from cyclic tests[R]. Austin:University of Texas at Austin, 1991:73-80.
[23] Shibuya S, Mitachi T, Fukuda F, et al. Strain rate effects on shear modulus and damping of normally consolidated clay[J]. Geotechnical Testing Journal, 1995, 18(3):365-375.
[24] Darendeli M B. Development of a new family of normalized modulus reduction and material damping curves[D]. Austin:Department of Civil Engineering, University of Texas at Austin, 2001.
[25] Rix G J, Meng J W. A non-resonance method for measuring dynamic soil properties[J]. Geotechnical Testing Journal, 2005, 28(1):1-8.
[26] Meng J W, Earthquake ground motion simulation with frequency-dependent soil properties[J]. Soil Dynamics and Earthquake Engineering, 2007, 27(3):234-241.
[27] Khan Z H, Cascante G, El Naggar M H, et al. Measurement of frequency-dependent dynamic properties of soils using the resonant-column device[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(9):1319-1326.
[28] 黎冰, 高玉峰, 丰土根. 振动频率对LCES动力特性的影响分析及其机理初探[J]. 岩土力学, 2008, 29(10):2731-2734. Li Bin, Gao Yufeng, Feng Yugen. Cyclic loading frequency effect and mechanism of lightweight clay-EPS beads soil[J]. Rock and Soil Mechanics, 2008, 29(10):2731-2734. (in Chinese)
[29] 徐学燕, 陈亚明. 冻土的动力特性研究及其参数确定[J]. 岩土工程学报, 1998, 20(5):77-81. Xu Xueyan, Chen Yaming. Research on dynamic characters of frozen soil and determination of its parameters[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(5):77-81. (in Chinese)
[30] 李瑞山, 陈龙伟, 袁晓铭, 等. 荷载频率对动模量阻尼比影响的试验研究[J]. 岩土工程学报, 2017, 39(1):71-80. Li Ruishan, Chen Longwei, Yuan Xiaoming, et al. Experimental study on influences of different loading frequencies on dynamic modulus and damping ratio[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1):71-80. (in Chinese)
[31] 卢啸, 陆新征, 李梦珂, 等. 地震作用设计参数调整对框架结构抗震设计及安全性的影响[J]. 工程力学, 2017, 34(4):22-31. Lu Xiao, Lu Xinzheng, Li Mengke, et al. Influence of seismic action adjustments on seismic design and safety of RC frames[J]. Engineering Mechanics, 2017, 34(4):22-31. (in Chinese)
[32] 朱志辉, 杨乐, 王力东, 等. 地震作用下铁路斜拉桥动力响应及行车安全性研究[J]. 工程力学, 2017, 34(4):78-87. Zhu Zhihui, Yang Le, Wang Lidong, et al. Dynamic responses and train running safety of railway cable-stayed bridge under earthquakes[J]. Engineering Mechanics, 2017, 34(4):78-87. (in Chinese)
[33] Kiani J, Pezeshk S. Sensitivity analysis of the seismic demands of RC moment resisting frames to different aspects of ground motions[J]. Earthquake Engineering & Structural Dynamics, 2017, 46(15):2739-2755.
[34] 孙小云, 韩建平, 党育, 等. 地震动持时对考虑梁柱节点区不同破坏模式RC框架的地震易损性影响[J]. 工程力学, 2018, 35(5):193-203. Sun Xiaoyun, Han Jianping, Dang Yu, et al. Effect of ground motion duration on seismic fragility of RC frames with different beam-column joint failure modes[J]. Engineering Mechanics, 2018, 35(5):193-203. (in Chinese)
[35] 张锐, 成虎, 吴浩, 等. 时程分析考虑高阶振型影响的多频段地震波选择方法研究[J]. 工程力学, 2018, 35(6):162-172. Zhang Rui, Cheng Hu, Wu Hao, et al. Multi-band matching method for selection of group motions in time-history analysis considering higher modes effects[J]. Engineering Mechanics, 2018, 35(6):162-172. (in Chinese)
[36] Molazadeh M, Saffari H. The effects of ground motion duration and pinching-degrading behavior on seismic response of SDOF systems[J]. Soil Dynamics and Earthquake Engineering, 2018, 114:333-347.
[37] Safak E. Discrete-time analysis of seismic site amplification[J]. Journal of Engineering Mechanics, 1995, 121(7):801-809.
[38] 廖振鹏. 地震小区划-理论与实践[M]. 北京:地震出版社, 1989:134-140. Liao Zhenpeng. Seismic microzonation:theory and practice[M]. Beijing:Seismological Press, 1989:134-140. (in Chinese)
[39] Meng J. Earthquake ground motion simulation with frequency-dependent soil properties[J]. Soil Dynamics and Earthquake Engineering, 2007, 27(3):234-241.
[40] Pacific Earthquake Engineering Research Center. PEER Ground Motion Database[DB]. http://ngawest2.berkeley.edu/.2017-06-28.
[1] 刘文光, 张鑫, 郭彦, 张强. 放大型黏滞阻尼墙的力学性能与试验研究[J]. 工程力学, 2019, 36(8): 40-48.
[2] 徐龙河, 杨雪飞. 自复位支撑-钢框架结构直接基于位移的支撑参数设计与分析[J]. 工程力学, 2019, 36(8): 141-148.
[3] 孟栋梁, 杨孟刚, 费凡. 碰撞对高铁简支桥梁横向地震响应影响的振动台试验研究[J]. 工程力学, 2019, 36(8): 161-170,181.
[4] 郭秀秀, 徐兴华, 黄举, 史庆轩. 地震作用的相关性对结构瞬态响应的影响[J]. 工程力学, 2019, 36(5): 208-215.
[5] 席仁强, 许成顺, 杜修力, 许坤. 工作状态对风力发电机地震响应的影响[J]. 工程力学, 2019, 36(4): 80-88.
[6] 陈洋洋, 陈凯, 谭平, 张家铭. 负刚度非线性能量阱减震控制性能研究[J]. 工程力学, 2019, 36(3): 149-158.
[7] 潘超, 张瑞甫, 王超, 逯静洲. 单自由度混联II型惯容减震体系的随机地震响应与参数设计[J]. 工程力学, 2019, 36(1): 129-137,145.
[8] 兰香, 潘文, 白羽, 张龙飞, 余文正. 基于支撑刚度的消能减震结构最优阻尼参数研究[J]. 工程力学, 2018, 35(8): 208-217.
[9] 朱立华, 李钢, 李宏男. 考虑结构损伤的消能减震结构能量设计方法[J]. 工程力学, 2018, 35(5): 75-85.
[10] 曹胜涛, 李志山, 刘付钧. 一种非比例振型阻尼模型及在大规模非线性分析中的应用[J]. 工程力学, 2018, 35(11): 162-171.
[11] 张菊辉, 管仲国, 陈杨, 王伟, 汪鹏飞. 可提离式桩基础规则连续梁桥的地震响应分析[J]. 工程力学, 2017, 34(6): 190-197.
[12] 王笃国, 赵成刚. 地震波斜入射下考虑场地非线性、地形效应和土结动力相互作用的大跨连续刚构桥地震响应分析[J]. 工程力学, 2017, 34(4): 32-41.
[13] 王小庆, 金先龙, 杨志豪. 基于ALE的大型输水隧道地震动响应并行数值分析[J]. 工程力学, 2017, 34(3): 247-256.
[14] 王磊, 梁枢果, 张振华, 王述良, 邹良浩, 汤怀强. 超高层建筑横风向气动阻尼比评估方法研究[J]. 工程力学, 2017, 34(1): 145-153.
[15] 曾翔, 刘诗璇, 许镇, 陆新征. 基于FEMA-P58方法的校园建筑地震经济损失预测案例分析[J]. 工程力学, 2016, 33(增刊): 113-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张冬娟;崔振山;李玉强;阮雪榆. 平面应变板料拉弯成形回弹理论分析[J]. 工程力学, 2007, 24(7): 0 -071 .
[2] 张伯艳;陈厚群. LDDA动接触力的迭代算法[J]. 工程力学, 2007, 24(6): 0 -006 .
[3] 李宗利;杜守来. 高渗透孔隙水压对混凝土力学性能的影响试验研究[J]. 工程力学, 2011, 28(11): 72 -077 .
[4] 姜亚洲;任青文;吴晶;杜小凯. 基于双重非线性的混凝土坝极限承载力研究[J]. 工程力学, 2011, 28(11): 83 -088 .
[5] 张慕宇;杨智春;王乐;丁燕. 复合材料梁结构损伤定位的无参考点互相关分析方法[J]. 工程力学, 2011, 28(11): 166 -169 .
[6] 陈誉;刘飞飞. 正对称Pratt 桁架直腹杆受压大偏心N型圆钢管节点静力性能实验研究[J]. 工程力学, 2011, 28(11): 170 -177 .
[7] 郭佳民;董石麟;袁行飞. 随机缺陷模态法在弦支穹顶稳定性计算中的应用[J]. 工程力学, 2011, 28(11): 178 -183 .
[8] 祝效华;王宇;童华;刘应华. 基于弹塑性力学的油气井打捞公锥造扣全过程分析和评价[J]. 工程力学, 2011, 28(11): 184 -189 .
[9] 黄友钦;顾明. 风雪耦合作用下单层柱面网壳的动力稳定[J]. 工程力学, 2011, 28(11): 210 -217, .
[10] 袁振伟;王海娟;岳希明;褚福磊. 密封进口涡动系数对转子系统动力学性能的影响[J]. 工程力学, 2011, 28(11): 231 -236 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日