工程力学 ›› 2019, Vol. 36 ›› Issue (7): 89-98.doi: 10.6052/j.issn.1000-4750.2018.08.0464

• 土木工程学科 • 上一篇    下一篇

基于地震碰撞易损性的相邻结构临界间距研究

吴巧云1, 王涛1, 魏敏2, 朱宏平2   

  1. 1. 武汉工程大学土木工程与建筑学院, 湖北, 武汉 430073;
    2. 华中科技大学土木工程与力学学院, 湖北, 武汉 430074
  • 收稿日期:2018-08-24 修回日期:2018-10-30 出版日期:2019-07-06 发布日期:2019-07-06
  • 通讯作者: 朱宏平(1965-),男,湖北武汉人,教授,博士,博导,从事工程结构振动控制和健康监测研究(E-mail:hpzhu@mail.hust.edu.cn). E-mail:hpzhu@mail.hust.edu.cn
  • 作者简介:吴巧云(1985-),女,山东聊城人,副教授,博士后,从事工程结构振动控制和健康监测研究(E-mail:wuqiaoyun@wit.edu.cn);王涛(1994-),男,湖北荆州人,硕士,从事工程结构抗震研究(E-mail:459028499@qq.com).魏敏(1992-),男,四川巴中人,硕士,从事基于性能的抗震设计研究(Emial:845416053@qq.com)
  • 基金资助:
    国家自然科学基金项目(51408773);国家重点研发计划项目(2017YFC1500705)

Study on the critical separation distance of adjacent structures based on seismic pounding fragility

WU Qiao-yun1, WANG Tao1, WEI Min2, ZHU Hong-ping2   

  1. 1. School of Civil Engineering and Architecture, Wuhan Institute of Technology, Wuhan, Hubei 430073, China;
    2. School of Civil Engineering and Mechanics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
  • Received:2018-08-24 Revised:2018-10-30 Online:2019-07-06 Published:2019-07-06

摘要: 提出了一种基于近似解析的地震碰撞易损性确定相邻结构临界间距的方法。首先根据基于性能的抗震设计理论,将碰撞事件表示为单势垒首次超限可靠度问题;其次,通过随机振动理论得到不同地震动强度下结构体系的条件失效概率;然后,结合相邻结构的地震碰撞易损性,将临界间距的计算表述为逆可靠性问题,求出在结构设计使用年限内,某一具体目标碰撞概率所对应的临界间距值,通过蒙特卡洛数值模拟方法进行的相关验证,证实了上述理论的适用性与有效性。

关键词: 随机振动, 逆可靠性, 易损性, 临界间距, 碰撞风险

Abstract: An approximate analytical method for determining the critical separation distance of adjacent buildings based on seismic pounding fragility is proposed. Pounding events are expressed in the form of a single-barrier first-passage reliability problem according to the performance-based seismic design theory. With the random vibration theory, the conditional failure probabilities of a structural system under various seismic intensities are obtained. Combined with the seismic pounding fragility of adjacent buildings, the calculation of critical separation distance is descried as an inverse reliability problem. The critical separation distance corresponding to a targeted pounding probability during the design life is derived. The applicability and validity of the above theory are verified by the Monte Carlo numerical simulation method.

Key words: random vibration, inverse reliability, seismic fragility, critical separation distance, pounding risk

中图分类号: 

  • TU398
[1] Rosenblueth E, Meli R. The 1985 earthquake:causes and effects in Mexico city[J]. Concrete International, 1986, 8(2):23-34.
[2] Kasai K, Maison B F. Building pounding damage during the 1989 Loma Prieta earthquake[J]. Engineering Structures, 1997, 19(3):195-207.
[3] Sezen H, Whittaker A S, Elwood K J, et al. Performance of reinforced concrete buildings during the August 17, 1999 Kocaeli, Turkey earthquake, and seismic design and construction practice in Turkey[J]. Engineering Structures, 2003, 25(1):103-114.
[4] Dogangün A. Performance of reinforced concrete buildings during the May 1, 2003 Bingöl earthquake in Turkey[J]. Engineering Structures, 2004, 26(6):841-856.
[5] Naeim F, Lew M, Huang S C, et al. The performance of tall buildings during the 21 September 1999 Chi-Chi earthquake, Taiwan[J]. The Structure Design of Tall Building, 2000, 9(2):137-160.
[6] Wang Z F. A preliminary report on the Great Wenchuan Earthquake[J]. Earthquake Engineering and Engineering Vibration, 2008, 7(2):225-234.
[7] Li X, Zhou Z, Yu H, et al. Strong motion observations and recordings from the great Wenchuan earthquake[J]. Earthquake Engineering and Engineering Vibration, 2008, 7(3):235-246.
[8] Zhao B, Taucer F, Rossetto T. Field investigation on the performance of building structures during the 12 May 2008 Wenchuan earthquake in China[J]. Engineering Structures, 2009, 31(8):1707-1723.
[9] Jeng V, Kasai K, Maison F. A spectral difference method to estimate building separations to avoid pounding[J]. Earthquake Spectra, 1992, 8(2):201-213.
[10] Wang S S, Hong H P. Quantiles of critical separation distance for nonstationary seismic excitations[J]. Engineering Structures, 2006, 28(7):985-991.
[11] Bipin S. Effects of separation distance and nonlinearity on pounding response of adjacent structures[J]. International Journal of Civil and Structural Engineering, 2013, 3(3):603-612.
[12] Hao H, Shen J. Estimation of relative displacement of two adjacent asymmetric structures[J]. Earthquake Engineering and Structural Dynamics, 2001, 30(1):81-96.
[13] Lin J H, Weng C C. Probability analysis of seismic pounding of adjacent buildings[J]. Earthquake Engineering and Structural Dynamics, 2001, 30(10):1539-1557.
[14] Hong H P, Wang S S, Hong P. Critical building separation distance in reducing pounding risk under earthquake excitation[J]. Structural Safety, 2003, 25(3):287-303.
[15] 吴巧云, 朱宏平, 陈楚龙. 连接Maxwell模型的两相邻结构非线性地震反应分析[J]. 工程力学, 2015, 32(9):149-157. Wu Qiaoyun, Zhu Hongping, Chen Chulong. Nonlinear seismic response analysis of two adjacent structures connected using the Maxwell model[J]. Engineering Mechanics, 2015, 32(9):149-157. (in Chinese)
[16] 李青宁, 尹俊红, 张瑞杰, 等. 基于精细积分法的结构碰撞动力系数谱研究[J]. 工程力学, 2016, 33(3):161-168. Li Qingning, Yin Junhong, Zhang Ruijie, et al. Study on dynamic coefficient spectrum for structure pounding based on the precise time-integration method[J]. Engineering Mechanics, 2016, 33(3):161-168. (in Chinese)
[17] Favvata M J. Minimum required separation gap for adjacent RC frames with potential inter-story seismic pounding[J]. Engineering Structures, 2017, 152:643-659.
[18] Ghandil M, Aldaikh H. Damage-based seismic planar pounding analysis of adjacent symmetric buildings considering inelastic structure-soil-structure interaction[J]. Earthquake Engineering & Structural Dynamics, 2017, 46(7):1141-1159.
[19] Hao H. Analysis of seismic pounding between adjacent buildings[J]. Australian Journal of Structural Engineering, 2016, 16(3):208-225.
[20] 国巍, 余志武. 一种计算地震作用下相邻结构相对位移的改进差异谱方法[J]. 土木工程学报, 2012, 45(2):68-76. Guo Wei, Yu Zhiwu. An improved spectral difference method for calculating relative displacement in order to avoid pounding in earthquakes[J]. China Civil Engineering Journal, 2012, 45(2):68-76. (in Chinese)
[21] 魏敏. 基于地震碰撞易损性的相邻结构临界间距研究[D]. 武汉:华中科技大学, 2017. Wei Min. Study on critical distance of adjacent structures based on seismic pounding fragility[D]. Wuhan:Huazhong University of Science and Technology, 2017. (in Chinese)
[22] Lopez-Garacia D, Soog T T. Assessment of the separation necessary to prevent seismic pounding between linear structural systems[J]. Probabilistic Engineering Mechanics, 2009, 24(2):210-223.
[23] Rice S O. Mathematical analysis of random noise[J]. Bell Labs Technical Journal, 1944, 23(1):46-156.
[24] Vanmarcke E H. On the distribution of the first-passage time for normal stationary random processes[J]. Journal of Applied Mechanics, 1975, 42(1):2130-2135.
[25] Gill P E, Murray W, Wright M H. Practical optimization[M]. London and New York:Academic Press, 1981:84-87.
[26] Cornell C A, Jalayer F, Hamburger R O, et al. Probabilistic Basis for 2000 SAC Federal Emergency Management Agency Steel Moment Frame Guidelines[J]. Journal of Structural Engineering, 2002, 128(4):526-533.
[27] 吴巧云, 朱宏平, 樊剑, 等. 某框架结构的抗震性能评估[J]. 振动与冲击, 2012, 31(15):158-164. Wu Qiaoyun, Zhu Hongping, Fan Jian, et al. Seismic performance assessment on some frame structure[J]. Journal of Vibration and Shock, 2012, 31(15):158-164. (in Chinese)
[28] 吕大刚, 于晓辉. 基于地震易损性解析函数的概率地震风险理论研究[J]. 建筑结构学报, 2013, 34(10):41-48. Lü Dagang, Yu Xiaohui. Theoretical study of probabilistic seismic risk assessment based on analytical functions of seismic fragility[J]. Journal of Building Structures, 2013, 34(10):41-48. (in Chinese)
[29] 于晓辉, 吕大刚. 考虑结构不确定性的地震倒塌易损性分析[J]. 建筑结构学报, 2012, 33(10):8-14. Yu Xiaohui, Lü Dagang. Seismic collapse fragility analysis considering structural uncertainties[J]. Journal of Building Structures, 2012, 33(10):8-14. (in Chinese)
[30] Tubaldi E, Barbato M, Ghazizadeh S. A probabilistic performance-based risk assessment approach for seismic pounding with efficient application to linear systems[J]. Structural Safety, 2012, s36-37(2):14-22.
[31] Au S K, Beck J K. First excursion probabilities for linear systems by very efficient importance sampling[J]. Probabilistic Engineering Mechanics, 2001, 16(3):193-207.
[32] GB 5011-2010, 建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 5011-2010, Code for seismic design of buildings[S]. Beijing:China Architecture Industry Press, 2010. (in Chinese)
[33] GB 5011-2001, 建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2001. GB 5011-2001, Code for seismic design of buildings[S]. Beijing:China Architecture Industry Press, 2001. (in Chinese)
[1] 赵志鹏, 张瑞甫, 陈清军, 潘超, 王超. 基于减震比设计方法的惯容减震结构分析[J]. 工程力学, 2019, 36(S1): 125-130.
[2] 王东明, 高永武. 城市建筑群概率地震灾害风险评估研究[J]. 工程力学, 2019, 36(7): 165-173.
[3] 李戚齐, 曲哲, 解全才, 王多智. 我国公共建筑中吊顶的震害特征及其易损性分析[J]. 工程力学, 2019, 36(7): 207-215.
[4] 尚庆学, 李泽, 刘瑞康, 王涛. 管线系统抗震支架力学试验研究[J]. 工程力学, 2018, 35(S1): 120-125,133.
[5] 李宏男, 成虎, 王东升. 桥梁结构地震易损性研究进展述评[J]. 工程力学, 2018, 35(9): 1-16.
[6] 贾宏宇, 杜修力, 李兰平, 黄胜前, 郑史雄. 地震作用下梁体碰撞间隙宽度的概率分析方法[J]. 工程力学, 2018, 35(8): 39-45.
[7] 张耀庭, 杨力, 张江, 张诚诚. PC框架结构基于易损性的“强柱弱梁”设计方法研究[J]. 工程力学, 2018, 35(7): 104-116.
[8] 姚新强, 孙柏涛, 杨在林, 陈宇坤, 杨绪连. 地震灾害农居易损性新方法研究[J]. 工程力学, 2018, 35(6): 191-199.
[9] 孙小云, 韩建平, 党育, 周颖. 地震动持时对考虑梁柱节点区不同破坏模式RC框架的地震易损性影响[J]. 工程力学, 2018, 35(5): 193-203.
[10] 魏标, 杨添涵, 蒋丽忠. 轨道结构建模精细化程度对高速铁路连续梁桥地震易损性的影响[J]. 工程力学, 2018, 35(4): 16-23,51.
[11] 陈力波, 黄才贵, 谷音. 基于改进响应面法的公路简支梁桥地震易损性分析[J]. 工程力学, 2018, 35(4): 208-218.
[12] 孙晓丹, 曾程, 杨成, 李永恒, 常志旺. 基于有限断层随机地震动合成的高速路网地震危险性分析[J]. 工程力学, 2018, 35(4): 186-199.
[13] 李勇, 闫维明, 刘晶波, 解梦飞. 近断层高架连续梁桥地震易损性与振动台试验研究[J]. 工程力学, 2018, 35(4): 52-60,86.
[14] 王树和, 张举兵. 基于地震损失风险钢筋混凝土框架结构弯矩增大系数评估[J]. 工程力学, 2018, 35(3): 132-140.
[15] 王丰, 李宏男. 基于简化IDA的结构地震损伤评估方法[J]. 工程力学, 2018, 35(12): 194-202.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日