工程力学 ›› 2019, Vol. 36 ›› Issue (7): 48-56,108.doi: 10.6052/j.issn.1000-4750.2018.08.0458

• 土木工程学科 • 上一篇    下一篇

自重对混凝土三点弯曲梁断裂性能的影响

尹阳阳1, 胡少伟2,3, 王宇航2   

  1. 1. 河海大学土木与交通学院, 南京 210098;
    2. 重庆大学土木工程学院, 重庆 400045;
    3. 南京水利科学研究院, 南京 210024
  • 收稿日期:2018-08-16 修回日期:2018-12-25 出版日期:2019-07-06 发布日期:2019-07-06
  • 通讯作者: 胡少伟(1969-),男,河南杞县人,教授,博士,主要从事混凝土断裂力学研究(E-mail:hushaowei@nhri.cn). E-mail:hushaowei@nhri.cn
  • 作者简介:尹阳阳(1991-),男,河南开封人,博士生,主要从事混凝土断裂力学研究(E-mail:yinyy1991@hhu.edu.cn);王宇航(1985-),男,重庆人,研究员,博士,主要从事组合结构研究(E-mail:wangyuhang@cqu.edu.cn).
  • 基金资助:
    国家自然科学基金重点项目(51739008);国家重大科研仪器研制项目(51527811)

Influence of self-weight on the fracture properties of three-point bending concrete beams

YIN Yang-yang1, HU Shao-wei2,3, WANG Yu-hang2   

  1. 1. College of Civil and Transportation Engineering, Hohai university, Nanjing 210098, China;
    2. College of Civil Engineering, Chongqing university, Chongqing 400045, China;
    3. Nanjing Hydraulic Research Institute, Nanjing 210024, China
  • Received:2018-08-16 Revised:2018-12-25 Online:2019-07-06 Published:2019-07-06

摘要: 自重对三点弯曲梁试件的断裂性能有重要影响,而以往基于三点弯曲梁研究混凝土的断裂性能时,很少考虑自重引起的试件初始裂缝张口位移(CMODini)的影响。为了研究CMODini对三点弯曲梁断裂性能的影响规律,给出了CMODini及考虑CMODini影响的有效裂缝长度(ac)和失稳断裂韧度(KICun)的计算公式,并用不同试件尺寸及不同初始缝高比的三点弯曲梁试验数据进行了对比分析。结果表明:当试件初始缝高比为0.4时,CMODini受试件尺寸影响较小,即使试件尺寸达到2200 mm×550 mm×240 mm时,自重对其CMODiniacKICun的影响均小于5%。CMODini受初始缝高比的影响较大,且随着初始缝高比的增大而增大,对于尺寸为1143 mm×305 mm×76 mm,初始缝高比为0.818的三点弯曲梁试件,自重对其CMODini、ac及KICun的影响分别为24.26%、1.73%和17.31%。可见,当三点弯曲梁试件尺寸及初始缝高比均较大时应该考虑自重引起的CMODini的影响。

关键词: 混凝土, 自重, 三点弯曲梁, 初始裂缝张口位移, 失稳断裂韧度, K断裂模型

Abstract: Self-weight has a significant influence on the fracture properties of beams under three-point bending (TPB). However, the influence of initial crack mouth opening displacement (CMODini) caused by self-weight was rarely considered in previous research on concrete fracture properties based on TPB beams. To investigate the influence of CMODini on the fracture properties of TPB beams, a calculation formula of CMODini, effective crack length (ac) and unstable fracture toughness (KICun)considering the influence of CMODini are presented. The calculated results of the formula were compared with the experimental data of specimens of different sizes and initial crack-depth ratios. The results indicate that CMODini is slightly influenced by the specimen sizes. The influence of the self-weight on CMODini, ac and KICun is less than 5% even if the specimen size is 2200 mm×550 mm×240 mm and the initial crack-depth ratio is 0.4. CMODini is greatly influenced by the initial crack-depth ratio. The influence increases with the increase of the initial crack-depth ratio. Moreover, the influences of the self-weight on CMODini, ac and KICun are 24.26%, 1.73% and 17.31%, respectively, when the specimen size is 1143 mm×305 mm×76 mm and the initial crack-depth ratio is 0.818. Therefore, the influence of CMODini caused by the self-weight of TPB beams should be taken into account when both the specimen size and the initial crack-depth ratio are large.

Key words: concrete, self-weight, three-point bending beam, initial crack mouth opening displacement, unstable fracture toughness, double-K fracture model

中图分类号: 

  • TU502+.6
[1] 杜修力, 金浏, 李冬. 混凝土与混凝土结构尺寸效应述评(I):材料层次[J]. 土木工程学报, 2017, 50(9):28-45. Du Xiuli, Jin Liu, Li Dong. A state-of-the-art review on the size effect of concretes and concrete structures (I):concrete materials[J]. China Civil Engineering Journal, 2017, 50(9):28-45. (in Chinese)
[2] 杜修力, 金浏, 李冬. 混凝土与混凝土结构尺寸效应述评(Ⅱ):构件层次[J]. 土木工程学报, 2017, 50(11):24-44. Du Xiuli, Jin Liu, Li Dong. A state-of-the-art review on the size effect of concretes and concrete structures (Ⅱ):RC members[J]. China Civil Engineering Journal, 2017, 50(11):24-44. (in Chinese)
[3] 杜敏, 金浏, 李冬, 等. 骨料粒径对混凝土劈拉性能及尺寸效应影响的细观数值研究[J]. 工程力学, 2017, 34(9):54-63. Du Min, Jin Liu, Li Dong, et al. Mesoscopic simulation study of the influence of aggregate size on mechanical properties and specimen size effect of concrete subjected to splitting tensile loading[J]. Engineering Mechanics, 2017, 34(9):54-63. (in Chinese)
[4] Bažant Z P. Size effect in blunt fracture:concrete, rock, metal[J]. Journal of Engineering Mechanics, 1984, 110(4):518-535.
[5] Bažant Z P, Yu Q. Universal size effect law and effect of crack depth on quasi-brittle structure strength[J]. Journal of Engineering Mechanics, 2009, 135(2):78-84.
[6] Hoover C G, Bažant Z P. Comprehensive concrete fracture tests:Size effects of Types 1& 2, crack length effect and postpeak[J]. Engineering Fracture Mechanics, 2013, 110:281-289.
[7] Hoover C G, Bažant Z P. Universal size-shape effect law based on comprehensive concrete fracture tests[J]. Journal of engineering mechanics, 2014, 140(3):473-479.
[8] Hu X Z, Wittmann F. Size effect on toughness induced by crack close to free surface[J]. Engineering Fracture Mechanics, 2000, 65(2):209-221.
[9] Hu X Z. An asymptotic approach to size effect on fracture toughness and fracture energy of composites[J]. Engineering Fracture Mechanics, 2002, 69(5):555-564.
[10] Hu X Z, Duan K. Size effect and quasi-brittle fracture:the role of FPZ[J]. International Journal of Fracture, 2008, 154(1/2):3-14.
[11] Wang Y S, Hu X Z, Liang L, et al. Determination of tensile strength and fracture toughness of concrete using notched 3-p-b specimens[J]. Engineering Fracture Mechanics, 2016, 160:67-77.
[12] Wang Y S, Hu X Z. Determination of tensile strength and fracture toughness of granite using notched three-pointbend samples[J]. Rock Mechanics & Rock Engineering, 2017, 50(1):17-28.
[13] Guan J F, Hu X Z, Yao X H, et al. Fracture of 0.1 and 2 m long mortar beams under three-point-bending[J]. Materials & Design, 2017, 133(11):363-375.
[14] 管俊峰, 王强, Hu Xiaozhi, 等. 考虑骨料尺寸的混凝土岩石边界效应断裂模型[J]. 工程力学, 2017, 34(12):22-30. Guan Junfeng, Wang Qiang, Hu Xiaozhi, et al. Boundary effect frture model for concrete and granite considering aggregate size[J]. Engineering Mechanics, 2017, 34(12):22-30. (in Chinese)
[15] 徐平, 胡晓智, 张敏霞, 等. 考虑骨料体积含量影响的混凝土准脆性断裂预测模型及应用[J]. 工程力学, 2018(10):75-84. Xu Ping, Hu Xiaozhi, Zhang Minxia, et al. Quasi-brittle fracture model and application on concrete considering aggregate volume content effect[J]. Engineering Mechanics, 2018(10):75-84. (in Chinese)
[16] Zhang C G, Hu X Z, Wu Z M, et al. Influence of grain size on granite strength and toughness with reliability specified by normal distribution[J]. Theoretical and Applied Fracture Mechanics, 2018, 96:534-544.
[17] Zhang C G, Hu X Z, Sercombe T, et al. Prediction of ceramic fracture with normal distribution pertinent to grain size[J]. Acta Materialia, 2018, 145:41-48.
[18] 管俊峰, 谢超鹏, Hu Xiaozhi, 等. 基于边界效应理论确定热轧碳素钢的韧度与强度[J]. 工程力学, 2019, 36(3):231-239. Guan Junfeng, Xie Pengchao, Hu Xiaozhi, et al. Determination of fracture toughness and yield strength of hot rolled carbon steel based on boundary effect theory[J]. Engineering Mechanics, 2019, 36(3):231-239. (in Chinese)
[19] 管俊峰, 姚贤华, 白卫峰, 等. 由小尺寸试件确定混凝土的断裂韧度与拉伸强度[J]. 工程力学, 2019, 36(1):70-79. Guan Junfeng, Yao Xianhua, Bai Weifeng, et al. Determination of fracture toughness and tensile strength of concrete using small specimens[J]. Engineering Mechanics, 2019, 36(1):70-79. (in Chinese)
[20] 徐世烺, 周厚贵, 高洪波, 等. 各种级配大坝混凝土双K断裂参数试验研究-兼对《水工混凝土断裂试验规程》制定的建议[J]. 土木工程学报, 2006, 39(11):50-62. Xu Shilang, Zhou Hougui, Gao Hongbo, et al. Experimental study on double-K fracture parameters of concrete for dam construction with various grading aggregates[J]. China Civil Engineering Journal, 2006, 39(11):50-62. (in Chinese)
[21] 赵志方, 张小刚, 周厚贵, 等. 长江三峡大坝混凝土双K断裂参数试验研究[J]. 深圳大学学报(理工版), 2007, 24(4):363-367. Zhao Zhifang, Zhang Xiaogang, Zhou Hougui, et al.Experimental study for determining double-K fracture parameters of the Three Gorges Dam concrete[J]. Journal of Shenzhen University Science & Engineering, 2007, 24(4):363-367. (in Chinese)
[22] Xu S L, Zhang X F. Determination of fracture parameters for crack propagation in concrete using an energy approach[J]. Engineering Fracture Mechanics, 2008, 75(15):4292-4308.
[23] 徐世烺, 余秀丽, 李庆华. 电测法确定低强混凝土裂缝起裂和等效裂缝长度[J]. 工程力学, 2015, 32(12):84-89. Xu Shilang, Yu Xiuli, Li Qinghua. Determination of crack initiation and equivalent crack length of low strength concrete using strain gauges[J]. Engineering Mechanics, 2012, 29(1):162-167. (in Chinese)
[24] 胡少伟, 安康. 不同尺寸混凝土三点弯曲梁试件断裂过程试验研究[J]. 水利水电技术, 2015, 46(6):120-125. Hu Shaowei, An Kang. Experimental study on fracture process of various size specimens of three-point bending concrete beam[J]. Water Resources and Hydropower Engineering, 2015, 46(6):120-125. (in Chinese)
[25] 徐世烺, 卜丹, 张秀芳. 不同尺寸楔入式紧凑拉伸试件双K断裂参数的试验测定[J]. 土木工程学报, 2008, 41(2):70-76. Xu Shilang, Bu Dan, Zhang Xiufang. Study on double-K fracture parameters by using wedge-splitting test on compact tension specimens of various sizes[J]. China Civil Engineering Journal, 2008, 41(2):70-76. (in Chinese)
[26] 胡少伟, 胡鑫. 含空洞缺陷混凝土试件楔入劈拉性能分析[J]. 水利水运工程学报, 2017(1):1-9. Hu Shaowei, Hu Xin. Experimental studies and performance analysis of wedge splitting for concrete specimens with cavity defects[J]. Hydro-Science and Engineering, 2017(1):1-9. (in Chinese)
[27] Guan J F, Hu X Z, Xie C P, et al. Wedge-splitting tests for tensile strength and fracture toughness of concrete[J]. Theoretical and Applied Fracture Mechanics, 2018, 93:263-275.
[28] Mi Z X, Hu Y, Li Q B, et al. Effect of curing humidity on the fracture properties of concrete[J]. Construction and Building Materials, 2018, 169:403-413.
[29] Mi Z X, Hu Y, Li Q B, et al. Elevated temperature inversion phenomenon in fracture properties of concrete and its application to maturity model[J]. Engineering Fracture Mechanics, 2018, 199:294-307.
[30] Mi Z X, Hu Y, Li Q B, et al. Maturity model for fracture properties of concrete considering coupling effect of curing temperature and humidity[J]. Construction and Building Materials, 2019, 196:1-13.
[31] Kumar S, Barai S V. Influence of specimen geometry on determination of double-K fracture parameters of concrete:a comparative study[J]. International Journal of Fracture, 2008, 149(1):47-66.
[32] Li Q B, Guan J F, Wu Z M, et al. Fracture behavior of site-casting dam concrete[J]. ACI Materials Journal, 2015, 112(1):11-20.
[33] Guan J F, Li Q B, Wu Z M, et al. Fracture parameters of site-cast dam and sieved concrete[J]. Magazine of Concrete Research, 2015, 68(1):1-12.
[34] Guan J F, Li Q B, Wu Z M, et al. Minimum specimen size for fracture parameters of site-casting dam concrete[J]. Construction & Building Materials, 2015, 93(1):973-982.
[35] Li Q B, Guan J F, Wu Z M, et al. Equivalent maturity for ambient temperature effect on fracture parameters of site-casting dam concrete[J]. Construction and Building Materials, 2016, 120:293-308.
[36] Xu S L, Reinhardt H W. A simplified method for determining double-K fracture parameters for three-point bending tests[J]. International Journal of Fracture, 2000, 104(2):181-209.
[37] 荣华, 董伟, 吴智敏, 等. 大初始缝高比混凝土试件双K断裂参数的试验研究[J]. 工程力学, 2012, 29(1):162-167. Rong Hua, Dong Wei, Wu ZhiMin, et al. Experimental investigation on double-K fracture parameters for large initial crack-depth ratio in concrete[J]. Engineering Mechanics, 2012, 29(1):162-167. (in Chinese)
[38] Hoover C G, Bažant Z P, Vorel J, et al. Comprehensive concrete fracture tests:Description and results[J]. Engineering Fracture Mechanics, 2013, 114:92-103.
[39] Liu X Y, Li Z C. Determining double-K fracture parameters of concrete only by the measured peak load[J]. Theoretical & Applied Fracture Mechanics, 2016, 85:412-423.
[40] 赵燕茹, 王磊, 韩霄峰, 等. 冻融条件下玄武岩纤维混凝土断裂韧度研究[J]. 工程力学, 2017, 34(9):92-101. Zhao Yanru, Wang Lei, Han Xiaofeng, et al. Fracture toughness of basalt-fiber reinforced concrete subjected tocyclic freezing and thawing[J]. Engineering Mechanics, 2017, 34(9):92-101. (in Chinese)
[41] 徐世烺, 张秀芳, 郑爽. 小骨料混凝土双K断裂参数的试验测定[J]. 水利学报, 2006, 37(5):543-553. Xu Shilang, Zhang Xiufang, Zheng Shuang. Experimental measurement of double-K fracture parameters of concrete with small-size aggregates[J]. Journal of Hydraulic Engineering, 2006, 37(5):543-553. (in Chinese)
[42] 徐世烺, 熊松波, 李贺东, 等. 混凝土断裂参数厚度尺寸效应的定量表征与机理分析[J]. 土木工程学报, 2017(5):57-71. Xu Shilang, Xiong Songbo, Li Hedong, et al. Quantitative characterization and mechanism analysis on thickness-dependent size effect of concrete fracture[J]. China Civil Engineering Journal, 2017, 50(5):57-71. (in Chinese)
[1] 杨志坚, 韩嘉明, 雷岳强, 赵海龙, 胡嘉飞. 预应力混凝土管桩与承台连接节点抗震性能研究[J]. 工程力学, 2019, 36(S1): 248-254.
[2] 代鹏, 杨璐, 卫璇, 周宇航. 不锈钢管混凝土短柱轴压承载力试验研究[J]. 工程力学, 2019, 36(S1): 298-305.
[3] 隋䶮, 薛建阳, 董金爽, 张锡成, 谢启芳, 白福玉. 附设粘滞阻尼器的混凝土仿古建筑梁-柱节点恢复力模型试验研究[J]. 工程力学, 2019, 36(S1): 44-53.
[4] 杜春波, 王涛, 郄毅. 交替协调子结构混合试验方法研究[J]. 工程力学, 2019, 36(S1): 54-58.
[5] 林德慧, 陈以一. 部分填充钢-混凝土组合柱整体稳定分析[J]. 工程力学, 2019, 36(S1): 71-77,85.
[6] 刘兴喜, 徐荣桥. FRP加固混凝土梁粘结层剪应力分析[J]. 工程力学, 2019, 36(S1): 149-153.
[7] 关少钰, 白涌滔, 刘卫辉, 李银胜, 王伟. 基于统一强度理论的高强钢管混凝土柱压弯屈服准则[J]. 工程力学, 2019, 36(S1): 170-174,183.
[8] 徐金金, 杨树桐, 刘治宁. 碱激发矿粉海水海砂混凝土与CFRP筋粘结性能研究[J]. 工程力学, 2019, 36(S1): 175-183.
[9] 袁辉辉, 吴庆雄, 陈宝春, 蔡慧雄. 平缀管式钢管混凝土格构柱拟动力试验研究[J]. 工程力学, 2019, 36(7): 67-78.
[10] 邓明科, 董志芳, 杨铄, 王露, 周铁钢. 高延性混凝土加固震损砌体结构振动台试验研究[J]. 工程力学, 2019, 36(7): 116-125.
[11] 魏慧, 吴涛, 杨雪, 刘喜. 纤维增韧轻骨料混凝土单轴受压应力-应变全曲线试验研究[J]. 工程力学, 2019, 36(7): 126-135,173.
[12] 梁兴文, 王莹, 于婧, 李林. 预制UHPC模板及采用预制模板的RC板受力性能及承载力分析[J]. 工程力学, 2019, 36(7): 146-155.
[13] 马颖, 王东升, 解河海, 白卫峰. 基于Bayesian理论的弯剪破坏钢筋混凝土柱变形能力概率模型[J]. 工程力学, 2019, 36(7): 216-226.
[14] 杨参天, 解琳琳, 李爱群, 陈越. 足尺空腔式RC框架柱抗震性能试验研究[J]. 工程力学, 2019, 36(6): 60-69.
[15] 金浏, 郝慧敏, 张仁波, 杜修力. 高温下混凝土动态压缩行为细观数值研究[J]. 工程力学, 2019, 36(6): 70-78,118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日