工程力学 ›› 2019, Vol. 36 ›› Issue (9): 12-24.doi: 10.6052/j.issn.1000-4750.2018.08.0454

• 综述 • 上一篇    下一篇

摇摆结构刚体模型研究综述

赵子翔, 苏小卒   

  1. 同济大学建筑工程系, 上海 200092
  • 收稿日期:2018-08-16 修回日期:2019-03-17 出版日期:2019-09-25 发布日期:2019-04-29
  • 通讯作者: 苏小卒(1956-),男,河南人,教授,博士,博导,主要从事混凝土结构及工程结构抗震研究(E-mail:xiaozusu@mail.tongji.edu.cn). E-mail:xiaozusu@mail.tongji.edu.cn
  • 作者简介:赵子翔(1994-),男,广西桂林人,博士生,主要从事混凝土摇摆结构理论研究(E-mail:zhaozx@tongji.edu.cn).
  • 基金资助:
    国家自然科学基金项目(51178328)

LITERATURE REVIEW OF RESEARCHES ON RIGID BODY MODEL OF ROCKING STRUCTURE

ZHAO Zi-xiang, SU Xiao-zu   

  1. Department of Structural Engineering, Tongji University, Shanghai 200092, China
  • Received:2018-08-16 Revised:2019-03-17 Online:2019-09-25 Published:2019-04-29

摘要: 合理的理论模型对于结构分析至关重要,摇摆结构理论研究中应用最为广泛的模型是摇摆刚体模型。该文对摇摆结构刚体模型进行了较为系统考察与总结,对摇摆刚体模型的研究起源与研究现状进行了介绍,针对经典摇摆刚体模型、其他典型摇摆刚体模型、相关试验研究、有限元模拟及其在结构体系中的应用进行了探讨,指出了已有模型的优点与局限性,提出摇摆结构刚体模型未来研究的关键问题,为建立更完善实用的摇摆结构刚体模型及应用于摇摆结构分析提供了参考。

关键词: 摇摆结构, 摇摆刚体模型, 摇摆振动, 非线性振动, 碰撞恢复系数, 抗倾覆稳定性, 模型应用

Abstract: A rational theoretical model is essential for structure analysis. The most widely used model in theoretical research for rocking structure is rocking rigid body model, which is systematically reviewed in this paper. The research origin and research status of rocking rigid body model are introduced. The classical rocking rigid body model, and other typical rocking rigid body model, as well as related experimental research, finite element simulation and application in structure system, are discussed. The advantages and limitations of existing rocking rigid body models are discussed and key issues in future study of rocking rigid body model are highlighted, which provides reference for the establishment of a more complete and practical rigid body model for rocking structure and its application to the analysis of rocking structure.

Key words: rocking structure, rocking rigid body model, rocking vibration, nonlinear vibration, collision restitution coefficient, anti-overturning stability, model application

中图分类号: 

  • TU318+.1
[1] Pacific Earthquake Engineering Research Center. Report of the seventh joint planning meeting of NEES/E-defense collaborative research on earthquake engineering[R]. PEER Report 2010/109. Berkeley:University of California, Berkeley, 2010.
[2] 周颖, 吕西林. 摇摆结构及自复位结构研究综述[J]. 建筑结构学报, 2011, 32(9):1-10. Zhou Ying, Lü Xilin. State-of-the-art on rocking and self-centering structures[J]. Journal of Building Structures, 2011, 32(9):1-10. (in Chinese)
[3] 蔡小宁, 孟少平, 孙巍巍. 自复位预制框架边节点组件受力性能试验研究[J]. 工程力学, 2014, 31(3):160-167. Cai Xiaoning, Meng Shaoping, Sun Weiwei. Experimental study on performance of components of the exterior self-centering post-tensioned precast connections[J]. Engineering Mechanics, 2014, 31(3):160-167. (in Chinese)
[4] 吴守君, 潘鹏, 张鑫. 框架-摇摆墙结构受力特点分析及其在抗震加固中的应用[J]. 工程力学, 2016, 33(6):54-60. Wu Shoujun, Pan Peng, Zhang Xin. Characteristics of frame rocking wall structure and its application in aseismic retrofit[J]. Engineering Mechanics, 2016, 33(6):54-60. (in Chinese)
[5] 贺俊筱, 王娟, 杨庆山. 摇摆状态下古建筑木结构木柱受力性能分析及试验研究[J]. 工程力学, 2017, 34(11):50-58. He Junxiao, Wang Juan, Yang Qingshan. Theoretical and experimental analysis on mechanical behavior of column in traditional tlmber structure during rocking[J]. Engineering Mechanics, 2017, 34(11):50-58. (in Chinese)
[6] 崔浩然, 吴刚, 冯德成. 摇摆构件摇摆前分析模型[J]. 工程力学, 2018, 35(12):34-45. Cui Haoran, Wu Gang, Feng Decheng. Analytical model of rocking elements before rocking[J]. Engineering Mechanics, 2018, 35(12):34-45. (in Chinese)
[7] Grigorian M, Moghadam A S, Mohammadi H. Advances in rocking core-moment frame analysis[J]. Bulletin of Earthquake Engineering, 2017, 15(12):5551-5577.
[8] Rahgozar N, Moghadam A S, Aziminejad A. Continuum analysis approach for rocking core-moment frames[J]. Journal of Structural Engineering, 2018, 144(3):04018006.
[9] Kibriya L T, Málaga-Chuquitaype C, Kashani M M, et al. Nonlinear dynamics of self-centring rocking steel frames using finite element models[J]. Soil Dynamics and Earthquake Engineering, 2018, 115:826-837.
[10] Midorikawa M, Azuhata T, Ishihara T, et al. Earthquake response reduction of buildings by rocking structural systems[C]//Proceedings of the SPIE. California:SPIE, 2002:265-272.
[11] 曲哲, 和田章, 叶列平. 摇摆墙在框架结构抗震加固中的应用[J]. 建筑结构学报, 2011, 32(9):11-19. Qu Zhe, Wada Akira, Ye Lieping, Seismic retrofit of frame structures using rocking wall system[J]. Journal of Building Structures, 2011, 32(9):11-19. (in Chinese)
[12] Kamperidis V C, Karavasilis T L, Vasdravellis G. Self-centering steel column base with metallic energy dissipation devices[J]. Journal of Constructional Steel Research, 2018, 149:14-30.
[13] 司炳君, 谷明洋, 孙治国, 等. 近断层地震动下摇摆-自复位桥墩地震反应分析[J]. 工程力学, 2017(10):94-104. Si Binjun, Gu Mingyang, Sun Zhiguo, et al. Theoretical and experimental analysis on mechanical behavior of column in traditional tlmber structure during rocking[J]. Engineering Mechanics, 2017, 34(11):50-58. (in Chinese)
[14] Psycharis I N, Kalyviotis I M, Mouzakis H P. Experimental investigation of the response of precast concrete cladding panels with integrated connections under monotonic and cyclic loading[J]. Engineering Structures, 2018, 159:75-88.
[15] 蔡小宁, 孟少平. 预应力自复位混凝土框架节点恢复力模型研究[J]. 工程力学, 2018, 35(1):182-190. Cai Xiaoning, Meng Shaoping. Research on restoring force model of the prestressed self-centering concrete frame joints[J]. Engineering Mechanics, 2018, 35(1):182-190. (in Chinese)
[16] 吕西林, 陈云, 蒋欢军. 新型可更换连梁研究进展[J]. 地震工程与工程振动, 2013, 04(1):8-15. Lü Xilin, Chen Yun, Jiang Huanjun. Research progress in new replaceable coupling beams[J]. Journal of Earthquake Engineering and Engineering Vibration, 2013, 33(1):8-15. (in Chinese)
[17] Housner G W. The Behavior of inverted pendulum structures during earthquakes[J]. Bulletin of the Seismological Society of America, 1963, 53(2):403-417.
[18] Housner G W. Limit design of structures to resist earthquakes[C]//Proceedings of 1st World Conference on Earthquake Engineering. California:Earthquake Engineering Research Institute, 1956:5-1-5-11.
[19] Yim C, Chopra A K, Joseph P. Rocking response of rigid blocks to earthquake[J]. Earthquake Engineering and Structural Dynamics, 1980, 8(6):565-587.
[20] Aslam M, Scalise D T, Godden W G. Earthquake rocking response of rigid bodies[J]. Journal of the Structural Division, 1980, 106(2):377-392.
[21] Jeong M Y, Lee H, Kim J H, et al. Chaotic behavior on rocking vibration of rigid body block structure under two-dimensional sinusoidal excitation (in the case of no sliding)[J]. KSME International Journal, 2003, 17(9):1249-1260.
[22] Jeong M Y, Yang I Y. Characterization on the rocking vibration of rigid blocks under horizontal harmonic excitations[J]. International Journal of Precision Engineering and Manufacturing, 2012, 13(2):229-236.
[23] Apostolou M, Gazetas G, Garini E. Seismic response of slender rigid structures with foundation uplifting[J]. Soil Dynamics and Earthquake Engineering, 2007, 27(7):642-654.
[24] Lipscombe P R, Pellegrino S. Free rocking of prismatic blocks[J]. Journal of Engineering Mechanics, 1993, 119(7):1387-1410.
[25] Makris N, Roussos Y S. Rocking response of rigid blocks under near-source ground motions[J]. Géotechnique, 2000, 50(3):243-262.
[26] Shenton H W, Jones N P. Base excitation of rigid bodies. I:formulation[J]. Journal of Engineering Mechanics, 1991, 117(10):2286-2306.
[27] Ishiyama Y. Motions of rigid bodies and criteria for overturning by earthquake excitations[J]. Earthquake Engineering and Structural Dynamics, 1982, 10(5):635-650.
[28] Spanos P D, Koh A S. Rocking of rigid blocks due to harmonic shaking[J]. Journal of Engineering Mechanics, 1984, 110(11):1627-1642.
[29] Zhang J, Makris N. Rocking response of free-standing blocks under cycloidal pulses[J]. Journal of Engineering Mechanics, 2001, 127(5):473-483.
[30] Makris N, Zhang J. Rocking response and overturning of anchored equipment under seismic excitations[R]. PEER Report 2000/13. Berkeley:University of California, Berkeley, 1999.
[31] Hogan S J. On the dynamics of rigid-block motion under harmonic forcing[J]. Proceedings of the Royal Society A, 1989, 425(1869):441-476.
[32] Dimitrakopoulos E G, Dejong M J. Revisiting the rocking block:closed-form solutions and similarity laws[J]. Proceedings Mathematical Physical and Engineering Sciences, 2012, 468(2144):2294-2318.
[33] Prieto F, Lourenco P B. On the rocking behavior of rigid objects[J]. Meccanica, 2005, 40(2):121-133.
[34] Prieto F, Lourenco P B, Oliveira C S. Impulsive dirac-delta forces in the rocking motion[J]. Earthquake Engineering and Structure Dynamics, 2004, 33(7):839-857.
[35] Imanishi N, Inoue Y, Shibata K, et al. Effect of base shape on damping of rocking of rigid body[J]. Journal of System Design and Dynamics, 2010, 76(6):109-119.
[36] Kalliontzis D, Sritharan S, Schultz A. Improved coefficient of restitution estimation for free rocking members[J]. Journal of Structural Engineering, 2016, 142(12):06016002.
[37] Ther T, Kollár L P. Refinement of Housner's model on rocking blocks[J]. Bulletin of Earthquake Engineering, 2017, 15(5):2305-2319.
[38] Vassiliou M F, Makris N. Dynamics of the vertically restrained rocking column[J]. Journal of Engineering Mechanics, 2015, 141(12):04015049.
[39] Koh A S, Spanos P D, Roesset J M. Harmonic rocking of rigid block on flexible foundation[J]. Journal of Engineering Mechanics, 1986, 112(11):1165-1180.
[40] Psycharis I N, Jennings P C. Rocking of slender rigid bodies allowed to uplift[J]. Earthquake Engineering and Structural Dynamics, 1983, 11(1):57-76.
[41] Palmeri A, Makris N. Response analysis of rigid structures rocking on viscoelastic foundation[J]. Earthquake Engineering and Structural Dynamics, 2008, 37(7):1039-1063.
[42] Palmeri A, Makris N. Linearization and first-order expansion of the rocking motion of rigid blocks stepping on viscoelastic foundation[J]. Earthquake Engineering and Structural Dynamics, 2008, 37(7):1065-1080.
[43] Chatzis M, Smyth A W. Robust modeling of the rocking problem[J]. Journal of Engineering Mechanics, 2012, 138(3):247-262.
[44] Shenton H W, Jones N P. Base excitation of rigid bodies. Ⅱ:periodic slide-rock response[J]. Journal of Engineering Mechanics, 1991, 117(10):2307-2328.
[45] Jeong M Y, Kim J H, Yang I Y. Chaotic rocking vibration of a rigid block with sliding motion under twodimensional harmonic excitation[J]. KSME International Journal, 2002, 16(9):1040-1053.
[46] Jeong M Y, Suzuki K, Yim S C S. Chaotic rocking behavior of freestanding objects with sliding motion[J]. Journal of Sound and Vibration, 2003, 262(5):1091-1112.
[47] Kounadis A N. On the rocking-sliding instability of rigid blocks under ground excitation:Some new findings[J]. Soil Dynamics and Earthquake Engineering, 2015, 75:246-258.
[48] Shi B, Anooshehpoor A, Zeng Y, et al. Rocking and overturning of precariously balanced rocks by earthquakes[J]. Bulletin of the Seismological Society of America, 1996, 86(5):1364-1371.
[49] Papantonopoulos C, Psycharis I N, Papastamatiou D Y, et al. Numerical prediction of the earthquake response of classical columns using the distinct element method[J]. Earthquake Engineering and Structural Dynamics, 2002, 31(9):1699-1717.
[50] Konstantinidis D, Makris N. The dynamics of a rocking block in three dimensions[C]//8th HSTAM International Congress on Mechanics. Patras, Greece, 2007.
[51] Chatzis M N, Smyth A W. Modeling of the 3D rocking problem[J]. International Journal of Non-Linear Mechanics, 2012, 47(4):85-98.
[52] Vassiliou M F, Burger S, Egger M, et al. The three-dimensional behavior of inverted pendulum cylindrical structures during earthquakes[J]. Earthquake Engineering and Structural Dynamics, 2017, 46(1):2261-2280.
[53] Peña F, Prieto F, Lourenço P B, et al. On the dynamics of rocking motion of single rigid-block structures[J]. Earthquake Engineering and Structural Dynamics, 2007, 36(15):2383-2399.
[54] Cheng C T. Energy dissipation in rocking bridge piers under free vibration tests[J]. Earthquake Engineering and Structural Dynamics, 2007, 36(4):503-518.
[55] Elgawady M A, Ma Q, Butterworth J W, et al. Effects of interface material on the performance of free rocking blocks[J]. Earthquake Engineering and Structural Dynamics, 2011, 40(4):375-392.
[56] Kalliontzis D, Sri S. A finite element approach for modelling controlled rocking systems[C]//2nd European Conference on Earthquake Engineering and Seismology 2014. Istanbul:European Association for Earthquake Engineering, 2014:5640-5651.
[57] Manos G, Petalas A, Demosthenous M. Numerical and experimental study of the rocking response of unanchored body to horizontal base excitation[C]//Proceedings of the 4th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering. Athens:National Technical University of Athens, 2013:1011-1024.
[58] Ardila-Giraldo O, Reyes J C, Smith-Pardo J P. Contact interface modeling in the dynamic response of rigid blocks subject to base excitation[C]//Proceedings of the 4th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering. Athens:National Technical University of Athens, 2013:3060-3071.
[59] Belleri A, Torquati M, Riva P. Finite Element modeling of ‘rocking walls’[C]//Proceedings of the 4th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering. Athens:National Technical University of Athens, 2013:2831-2848.
[60] Vassiliou M F, Mackie K R, Stojadinović B. Dynamic response analysis of solitary flexible rocking bodies:modeling and behavior under pulse -like ground excitation[J]. Earthquake Engineering and Structural Dynamics, 2014, 43(10):1463-1481.
[61] Thomaids I M, Camara A, Kappos A J. Simulating the rocking response of rigid bodies using general-purpose finite element software[C]//Proceedings of the 16th European Conference on Earthquake Engineering. Thessaloniki:Aristotle University of Thessaloniki, 2018.
[62] Makris N, Konstantinidis D. The rocking spectrum and the limitations of practical design methodologies[J]. Earthquake Engineering and Structural Dynamics, 2003, 32(2):265-289.
[63] Makris N, Vassiliou M F. Planar rocking response and stability analysis of an array of free-standing columns capped with a freely supported rigid beam[J]. Earthquake Engineering and Structural Dynamics, 2013, 42(3):431-449.
[64] Makris N, Vassiliou M F. Dynamics of the rocking frame with vertical restrainers[J]. Journal of Structural Engineering, 2015, 141(10):04014245.
[65] Dimitrakopoulos E G, Giouvanidis A I. Seismic response analysis of the planar rocking frame[J]. Journal of Engineering Mechanics, 2015, 141(7):04015003.
[66] Makris N, Aghagholizadeh M. The dynamics of an elastic structure coupled with a rocking wall[J]. Earthquake Engineering and Structural Dynamics, 2017, 46(6):945-962.
[67] Aghagholizadeh M, Makris N. Seismic response of a yielding structure coupled with a rocking wall[J]. Journal of Structural Engineering, 2018, 144(2):04017196.
[1] 李明, 吕振华. 一种锥形节流阀工作过程流-固耦合动力学响应的影响因素分析[J]. 工程力学, 2017, 34(9): 239-247.
[2] 王立岩, 李东升, 李宏男. 基于HHT的非线性振动系统参数识别研究[J]. 工程力学, 2017, 34(1): 28-32,44.
[3] 梁峰, 包日东. 输流管道含有内共振的横向受迫振动研究[J]. 工程力学, 2015, 32(4): 185-190.
[4] 张振波,马艳红,李骏,洪杰. 航空发动机支承不同心转子系统力学模型研究[J]. 工程力学, 2014, 31(7): 208-214,228.
[5] 葛庆子, 翁大根, 张瑞甫. 储液罐非线性简化模型及主共振研究[J]. 工程力学, 2014, 31(5): 166-171.
[6] 范雨, 戴光昊, 李琳. 多界面干摩擦系统的减振特性及设计方法研究[J]. 工程力学, 2014, 31(3): 237-246.
[7] 孙测世, 彭剑, 赵珧冰, 王志搴, 王连华. 斜拉桥主梁纵向漂移对拉索非线性振动影响[J]. 工程力学, 2014, 31(11): 86-91,131.
[8] 吴庆雄,王文平,陈宝春. 索梁结构非线性振动有限元分析[J]. 工程力学, 2013, 30(3): 347-354, 382.
[9] 王威, 宋玉玲, 王体春, 崔立. 非确定因素下汽车半主动悬架的智能控制[J]. 工程力学, 2012, 29(9): 337-342.
[10] 曹 晖 郑晓宇. 基于盲源分离的钢筋混凝土梁非线性振动特性分析[J]. 工程力学, 2012, 29(12): 121-126.
[11] 刘 龙;轩福贞;董达善. 脉动流作用下粘弹性直管动力学特性分析[J]. 工程力学, 2011, 28(10): 41-045.
[12] 刘金堂;杨晓东;张宇飞. 轴向运动大挠度板的非线性动力学行为[J]. 工程力学, 2011, 28(10): 58-064.
[13] 康厚军;赵跃宇. 索力对斜拉索动力特性的影响[J]. 工程力学, 2010, 27(6): 83-088.
[14] 刘习军;刘国英;王 霞;郭季平. 弹性圆柱壳液耦合系统内旋转重力波的近似解析解[J]. 工程力学, 2010, 27(2): 59-064,.
[15] 尹 犟;易伟建;胡其高. 结构整体抗震性能评估新方法[J]. 工程力学, 2010, 27(03): 123-131.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张伯艳;陈厚群. LDDA动接触力的迭代算法[J]. 工程力学, 2007, 24(6): 0 -006 .
[2] 陈有亮;邵伟;周有成. 水饱和混凝土单轴压缩弹塑性损伤本构模型[J]. 工程力学, 2011, 28(11): 59 -063, .
[3] 吴方伯;黄海林;陈伟;周绪红;. 肋上开孔对预制预应力混凝土带肋薄板施工阶段挠度计算方法的影响研究[J]. 工程力学, 2011, 28(11): 64 -071 .
[4] 李宗利;杜守来. 高渗透孔隙水压对混凝土力学性能的影响试验研究[J]. 工程力学, 2011, 28(11): 72 -077 .
[5] 王坤;谢康和;李传勋;童磊. 特殊条件下考虑起始比降的双层地基一维固结解析解[J]. 工程力学, 2011, 28(11): 78 -082 .
[6] 姜亚洲;任青文;吴晶;杜小凯. 基于双重非线性的混凝土坝极限承载力研究[J]. 工程力学, 2011, 28(11): 83 -088 .
[7] 吴明;彭建兵;徐平;孙苗苗;夏唐代. 考虑土拱效应的挡墙后土压力研究[J]. 工程力学, 2011, 28(11): 89 -095 .
[8] 陆本燕;刘伯权;邢国华;吴涛. 桥梁结构基于性能的抗震设防目标与性能指标研究[J]. 工程力学, 2011, 28(11): 96 -103, .
[9] 左志亮;蔡健;钟国坤;杨春;. 带约束拉杆T形截面钢管内核心混凝土的等效单轴本构关系[J]. 工程力学, 2011, 28(11): 104 -113 .
[10] 田力;高芳华. 地下隧道内爆炸冲击下地表多层建筑的动力响应研究[J]. 工程力学, 2011, 28(11): 114 -123 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日