工程力学 ›› 2019, Vol. 36 ›› Issue (9): 154-160,196.doi: 10.6052/j.issn.1000-4750.2018.08.0449

• 土木工程学科 • 上一篇    下一篇

基于格子Boltzmann方法非饱和土体水热耦合模型研究

李腾风, 王志良, 申林方, 徐则民   

  1. 昆明理工大学建筑工程学院, 云南, 昆明 650500
  • 收稿日期:2018-08-12 修回日期:2019-02-22 出版日期:2019-09-25 发布日期:2019-03-25
  • 通讯作者: 王志良(1982-),男,河北乐亭人,副教授,博士,从事岩土工程多场耦合方面的研究(E-mail:wangzhiliangtj@126.com). E-mail:wangzhiliangtj@126.com
  • 作者简介:李腾风(1994-),男,河南开封人,硕士生,从事非饱和土体水热耦合方面的研究(E-mail:ltfkmust@126.com);申林方(1982-),女,湖南邵阳人,副教授,博士后,从事岩土及隧道工程方面的研究(E-mail:linfangshen@126.com);徐则民(1963-),男,河北承德人,教授,博士,博导,从事工程地质方面的研究(E-mail:abc5100@188.com).
  • 基金资助:
    国家自然科学基金项目(51668028,51508253,U1502232);云南省应用基础研究计划项目(2016FB077)

A COUPLED MOISTURE-HEAT MODEL FOR UNSATURATED SOIL BASED ON LATTICE BOLTZMANN METHOD

LI Teng-feng, WANG Zhi-liang, SHEN Lin-fang, XU Ze-min   

  1. Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
  • Received:2018-08-12 Revised:2019-02-22 Online:2019-09-25 Published:2019-03-25

摘要: 考虑热源作用下非饱和土体水热耦合作用机制,基于格子Boltzmann方法,采用双分布函数分别描述温度场及水分场的演化过程,建立了相应的水热耦合模型。同时,编制了计算程序,并结合半无限空间的水热耦合算例,验证了该计算模型的正确性。最后考虑水热耦合作用模式、热源温度以及土体孔隙率等因素的影响,讨论了非饱和土体温度场及水分场的演化规律。研究结果表明:传统的单向耦合模式无法表征水分迁移对土体导热特性的影响,从而导致温度场的演化规律有所偏差,而所提出的双向耦合模式更具合理性。在恒温热源作用下,不同热源温度对土体温度场及水分场的演化均会产生较大影响,且在非饱和土体温度升高速率较快的位置,体积含水率也相应的变化较快。在相同热源作用下,当初始体积含水率一定时,孔隙率较小的土体,温度升高速度较快,但总体差别不大,从而使得体积含水率分布也较为接近。

关键词: 格子Boltzmann方法, 非饱和土体, 水热耦合, 水分迁移, 导热特性

Abstract: By considering the moisture-heat coupling mechanism of unsaturated soil under heat source, the double distribution functions are employed to describe the evolution of temperature field and moisture field respectively, and the coupled moisture-heat model is established based on the lattice Boltzmann method. Meanwhile, the corresponding program is compiled to verify the proposed model, using an example of moisture-heat coupling problem in the semi-infinite space. Finally, the evolution of temperature field and moisture field in unsaturated soil are discussed considering the effects of moisture-heat coupling mode, heat source temperature, and soil porosity. The results show that the traditional one-way coupling mode could not characterize the influence of moisture migration on the thermal conductivity of soil, which leads to deviation of temperature field. The proposed two-way coupling mode is more reasonable. The evolution of temperature field and moisture field are greatly influenced by the heat source temperature, and the volume moisture content also changes rapidly at locations where the temperature of unsaturated soil rises fast. Under the same heat source, when the initial volume moisture content is constant, the temperature increases faster for the soil with lower porosity, but the overall difference is not significant, which makes the distribution of volume moisture content very close.

Key words: lattice Boltzmann method, unsaturated soil, moisture-heat coupling, moisture migration, thermal conductivity

中图分类号: 

  • TU43
[1] 白冰, 刘大鹏. 非饱和介质中热能传输及水分迁移的数值积分解[J]. 岩土力学, 2006, 27(12):2085-2089. Bai Bing, Liu Dapeng. Numerical integral solutions of heat transfer and moisture transport in unsaturated porous media[J]. Rock and Soil Mechanics, 2006, 27(12):2085-2089. (in Chinese)
[2] 陈佩佩, 白冰. 非饱和土中温度引起水分迁移的光滑粒子法数值模拟[J]. 工程力学, 2016, 33(4):150-156. Chen Peipei, Bai Bing. SPH numerical simulation of moisture migration caused by temperature in unsaturated soils[J]. Engineering Mechanics, 2016, 33(4):150-156. (in Chinese)
[3] Selvadurai A P S. Heat-induced moisture movement in a clay barrier. Computational modelling and Ⅱ comparison with experimental results[J]. Engineering Geology, 1996, 41(1):219-238.
[4] 郭庆荣, 李玉山. 非恒温条件下土壤中水热耦合运移过程的数学模拟[J]. 中国农业大学学报, 1997, 2(增刊1):33-38. Guo Qingrong, Li Yushan. Mathematical simulation of heat ans water coupling flow in soil under unsteady temperature[J]. Journal of China Agricultural University, 1997, 2(Suppl 1):33-38. (in Chinese)
[5] 毛卫南, 刘建坤. 不同离散化方法在正冻土水热耦合模型中的应用[J]. 工程力学, 2013, 30(10):128-132. Mao Weinan, Liu Jiankun. Different discretization method using coupled water and heat transport mode for soil under freezing conditions[J]. Engineering Mechanics, 2013, 30(10):128-132. (in Chinese)
[6] Liu B C, Liu W, Peng S W. Study of heat and moisture transfer in soil with a dry surface layer[J]. International Journal of Heat and Mass Transfer, 2005, 48(21):4579-4589.
[7] Gan Guohui. Dynamic thermal performance of horizontal ground source heat pumps-The impact of coupled heat and moisture transfer[J]. Energy, 2018, 152:877-887.
[8] 陈黎. 能源与环境学科中的多尺度多物理化学耦合反应输运过程数值模拟研究[D]. 西安:西安交通大学, 2013. Chen Li. Numerical investigation of multiscale multiple physicochemical coupled reactive transport processed in energy and environmental discipline[D]. Xi'an:Xi'an Jiaotong University, 2013. (in Chinese)
[9] Lin Qi, Wang shugang, Ma zhenjun, et al. Lattice Boltzmann simulation of flow and heat transfer evolution inside encapsulated phase change materials due to natural convection melting[J]. Chemical Engineering Science, 2018, 189:154-164.
[10] Gao Dongyan, Chen Zhenqian, Chen Linghai, et al. A modified lattice Boltzmann model for conjugate heat transfer in porous media[J]. International Journal of Heat and Mass Transfer, 2017, 105:673-683.
[11] 田智威, 谭云亮. 含喉部裂隙介质CO2反应迁移的格子Boltzmann模拟研究[J]. 岩土力学, 2017, 38(3):663-671. Tian Zhiwei, Tan Yunliang. Lattice Boltzmann simulation of CO2 reactive transport in throat fractured media[J]. Rock of Soil Mechanics, 2017, 38(3):663-671. (in Chinese)
[12] 刘克同, 汤爱平, 曹鹏. 桥梁气动导数的格子Boltzmann大涡模拟仿真[J]. 工程力学, 2015, 32(5):111-119. Liu Ketong, Tang Aiping, Cao Peng. Large eddy simulation of the aerodynamic derivatives of bridge using lattice Boltzmann method[J]. Engineering Mechanics, 2015, 32(5):111-119. (in Chinese)
[13] 刘建刚, 刘泉, 周冬冬, 等. 地下水横向水平流速对人工水平冻结壁形成的影响[J]. 应用基础与工程科学学报, 2017, 25(2):258-265. Liu Jiangang, Liu Quan, Zhou Dongdong, et al. Influence of groundwater transverse horizontal flow velocity on the formation of artificial horizontal freezing wall[J]. Journal of Basic Science and Engineering, 2017, 25(2):258-265. (in Chinese)
[14] 夏锦红, 陈之祥, 夏元友, 等. 不同负温度条件下冻土导热系数的理论模型和试验验证[J].工程力学, 2018, 35(5):109-117. Xia Jinhong, Chen Zhixiang, Xia Yuanyou, et al. Theoretical model and experimental verification on thermal conductivity of frozen soil under different negative temperature conditions[J]. Engineering Mechanics, 2018, 35(5):109-117. (in Chinese)
[15] Wang Moran, Wang Jinku, Pan Ning, et al. Mesoscopic predictions of the effective thermal conductivity for microscale random porous media[J]. Physical Review E, 2007, 75(3):036702-1-036702-10.
[16] Guo Zhaoli, Zheng Chuguang, Shi Baochang. Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method[J]. Chinese Physics, 2002, 11(4):366-374.
[17] Song Wenyu, Zhang Yaning, Li Bingxi, et al. A lattice Boltzmann model for heat and mass transfer phenomena with phase transformations in unsaturated soil during freezing process[J]. International Journal of Heat and Mass Transfer, 2016, 94:29-38.
[1] 宋二祥, 仝睿, 罗爽, 李鹏. 路基土体“时变覆盖效应”的数值模拟分析[J]. 工程力学, 2019, 36(8): 30-39.
[2] 陈佩佩, 白冰. 非饱和土中温度引起水分迁移的光滑粒子法数值模拟[J]. 工程力学, 2016, 33(4): 150-156.
[3] 刘克同,汤爱平,曹鹏. 桥梁气动导数的格子Boltzmann大涡模拟仿真[J]. 工程力学, 2015, 32(5): 111-119.
[4] 周凯, 陈维山. 柔性丝线与下游圆柱相互作用的二维数值模拟研究[J]. 工程力学, 2015, 32(12): 40-48.
[5] 毛卫南,刘建坤. 不同离散化方法在正冻土水热耦合模型中的应用[J]. 工程力学, 2013, 30(10): 128-132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 颜学渊, 祁皑, 毛会敏, 张超, 徐小勇. 近场地震作用下巨-子隔震结构振动台试验[J]. 工程力学, 2017, 34(11): 109 -115,144 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日