工程力学 ›› 2019, Vol. 36 ›› Issue (9): 237-246.doi: 10.6052/j.issn.1000-4750.2018.08.0440

• 其他工程学科 • 上一篇    下一篇

空心圆柱低速垂直入水试验研究

侯宇, 黄振贵, 陈志华, 罗驭川   

  1. 南京理工大学瞬态物理国家重点实验室, 江苏, 南京 210094
  • 收稿日期:2018-08-05 修回日期:2018-11-04 出版日期:2019-09-25 发布日期:2019-04-12
  • 通讯作者: 黄振贵(1986-),男,广西人,博士,主要从事水下航行体研究(E-mail:hzgkeylab@njust.edu.cn). E-mail:hzgkeylab@njust.edu.cn
  • 作者简介:侯宇(1993-),男,江苏人,博士生,主要从事水下航行体研究(E-mail:houyu@njust.edu.cn);陈志华(1967-),男,湖南人,教授,双博士,博导,主要从事流体动力研究(E-mail:chenzh@mail.njust.edu.cn);罗驭川(1994-),男,陕西人,硕士生,主要从事水下航行体研究(E-mail:2301690025@qq.com).
  • 基金资助:
    瞬态物理国家重点实验室基金项目(614260403041803,61426040303162604004);中央高校基本科研业务费专项基金项目(30917012101);江苏省研究生科研与实践创新计划项目(KYCX19_0259)

AN EXPERIMENTAL INVESTIGATION ON THE LOW SPEED VERTICAL WATER-ENTRY OF HOLLOW CYLINDERS

HOU Yu, HUANG Zhen-gui, CHEN Zhi-hua, LUO Yu-chuan   

  1. National Key Laboratory of Transient Physics, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
  • Received:2018-08-05 Revised:2018-11-04 Online:2019-09-25 Published:2019-04-12

摘要: 为获得空心圆柱垂直入水空泡演化规律和运动特性,利用高速摄像技术对其低速垂直入水过程进行了试验研究。通过对空心圆柱体入水空泡的演化过程的观察和运动参数的测量,讨论分析空心结构对空泡形态演变的影响和不同入水速度下空泡演化过程和模型运动阻力变化。结果表明:空心结构诱发通孔射流使深闭合下的空泡壁由点分离形式变为线分离,出现新的空泡壁收缩形式,运动体尾部出现环状空泡,稳定状态空泡出现气泡分阶段脱落和"云化"现象;入水速度的增加使入水空泡由深闭合变为面闭合,空泡体积随入水速度变化较为明显,尾部气泡因空泡稳定状态的不同呈现不同脱落形式;通孔射流顶部存在小气泡,顶端液滴近似落体运动,表面张力对射流整体运动影响较小;孔中内流的产生有助于物体运动的稳定,物体水中阻力因入水速度不同短时间内产生两类变化,速度增高阻力曲线拐点增多。

关键词: 空心圆柱, 入水试验, 空泡演化, 通孔射流, 动态特征

Abstract: To reveal cavity evolution rules of the low speed vertical water-entry of hollow cylinders, an experiment was conducted incorporating high-speed video cameras and the visualization technique. According to the images of the flow patterns and motion parameters, the effects of hollow structures on cavity pinch-off, bubble evolution and velocity changes were addressed during the water-entry process. The results show that the deep-closed cavity at low water-entry speed collapses to an arc line between through-hole jets and cavitating flow instead of a point under the free surface. Therefore, the bubble shedding in steps, annular cavity on the jet and cloud cavity are observed at the stabilization stage of the cavity. The increase of water-entry velocity makes the cavity change from deep-closure to surface-closure with the cavity volume changed and different shedding patterns of the tail bubbles. The surface tension around the droplet presents minor effects on the overall motion of jets with a small bubble, which is approximately regarded as toss motion under gravity. The inflow in the hole contributes to the stability of the movement and the resistance curve has two types of changes and more inflection points with higher water-entry velocities.

Key words: hollow cylinder, water-entry experiment, cavity evolution, through-hole jet, dynamic characteristic

中图分类号: 

  • O35
[1] Worthington A M. On impact with a liquid surface[J]. Proceedings of the Royal Society of London, 1882, 34(220):217-230.
[2] Worthington A M, Cole R S. Impact with a liquid surface studied by the aid of instantaneous photography. paper Ⅱ[J]. Philosophical Transactions of the Royal Society of London, 1900, 194:175-199.
[3] Gilbarg D, Anderson R A. Influence of atmospheric pressure on the phenomena accompanying the entry of spheres into water[J]. Journal of Applied Physics, 1948, 19(2):127-139.
[4] Richardson E G. The impact of a solid on a liquid surface[J]. Proceedings of the Physical Society, 1948, 61(4):352.
[5] May A, Woodhull J C. Drag coefficients of steel spheres entering water vertically[J]. Journal of Applied Physics, 1948, 19(12):1109-1121.
[6] May A. Effect of surface condition of a sphere on its water-entry cavity[J]. Journal of Applied Physics, 1951, 22(10):1219-1222.
[7] Duez C, Ybert C, Clanet C, et al. Making a splash with water repellency[J]. Nature Physics, 2007, 3:180-183.
[8] Aristoff J M, Bush J W M. Water entry of small hydrophobic spheres[J]. Journal of Fluid Mechanics, 2009, 619:45-78.
[9] Korkmaz F C, Guzel B. Water entry of cylinders and spheres under hydrophobic effects; Case for advancing deadrise angles[J]. Ocean Engineering, 2017, 129:240-252.
[10] Truscott T T, Techet A H. Water entry of spinning spheres[J]. Journal of Fluid Mechanics, 2009, 625:135-165.
[11] Truscott T T, Techet A H. A spin on cavity formation during water entry of hydrophobic and hydrophilic spheres[J]. Physics of Fluids, 2009, 21(12):121703.
[12] 陈先富. 弹丸入水空穴的试验研究[J]. 爆炸与冲击, 1985, 5(4):70-73. Chen Xianfu. Experimental studies on the cavitation phenomena as a pellet entering water[J]. Explosion and Shock Waves, 1985, 5(4):70-73. (in Chinese)
[13] 何春涛, 王聪, 何乾坤, 等. 圆柱体低速入水空泡试验研究[J]. 物理学报, 2012, 61(13):281-288. He Chuntao, Wang Cong, He Qiankun, et al. Low speed water-entry of cylindrical projectile[J]. Acta Physica Sinica, 2012, 61(13):281-288. (in Chinese)
[14] 何春涛, 王聪, 闵景新, 等. 回转体匀速垂直入水早期空泡数值模拟研究[J]. 工程力学, 2012, 29(4):237-243. He Chuntao, Wang Cong, Ming Jingxin, et al. Numerical simulation of early air-cavity of cylinder cone with vertical water-entry[J]. Engineering Mechanics, 2012, 29(4):237-243. (in Chinese)
[15] Truscott T T, Epps B P, Belden J. Water entry of projectiles[J]. Annual Review of Fluid Mechanics, 2014, 46(1):355-378.
[16] 路中磊, 魏英杰, 王聪, 等. 基于高速摄像实验的开放腔体圆柱壳入水空泡流动研究[J]. 物理学报, 2016, 65(1):309-323. Lu Zhonglei, Wei Yingjie, Wang Cong, et al. An experimental study of water-entry cavitating flows of an end-closed cylindrical shell based on the high-speed imaging technology[J]. Acta Physica Sinica, 2016, 65(1):309-323. (in Chinese)
[17] 蒋运华, 徐胜利, 周杰. 圆盘空化器航行体入水空泡实验研究[J]. 工程力学, 2017, 34(3):241-246. Jiang Yunhua, Xu Shengli, Zhou Jie. Water entry experiment of a cylindrical vehicle with disc cavitator[J]. Engineering Mechanics, 2017, 34(3):241-246. (in Chinese)
[18] Jiang Y, Bai T, Gao Y, et al. Water entry of a constraint posture body under different entry angles and ventilation rates[J]. Ocean Engineering, 2018, 153:53-59.
[19] Tseitlin MYu. On the pressure on two parallel plates in a jet flow[R]. TsAGI Transactions on Hydrodynamics, 1959:296-308.
[20] Deinekin YuP. Cavity flow past flow passage bodies[J]. Gidromekhanika, 1994, 1(68):74-78.
[21] Savchenko G Y. Hydrodynamic characteristics of a disc with central duct in a supercavitation flow[M]. Berlin:Springer Berlin Heidelberg, 2012:107-113.
[22] 王雨时. 西方国家的空心弹技术[J]. 弹箭技术, 1996, 1(3):1-10. Wang Yushi. Studying progress on hollow projectile technique in the western countries[J]. Projectile and Rocket Technology, 1996, 1(3):1-10. (in Chinese)
[23] 王雨时. 西方国家的空心弹技术(续)[J]. 弹箭技术, 1996, 1(3):14-23. Wang Yushi. Studying progress on hollow projectile technique in the western countries[J]. Projectile and Rocket Technology, 1996, 1(3):14-23. (in Chinese)
[24] Ramamurthi K, Nandakumar K. Characteristics of flow through small sharp-edged cylindrical orifices[J]. Flow Measurement and Instrumentation, 1999, 10(3):133-143.
[25] Epps B P. An impulse framework for hydrodynamic force analysis:fish propulsion, water entry of spheres, and marine propellers[M]. Cambridge:Massachusetts Institute of Technology, 2010:133-165.
[1] 宋国荣, 刘明坤, 吕炎, 刘宏业, 吴斌, 何存富. 正交各向异性空心圆柱体中的纵向导波[J]. 工程力学, 2018, 35(3): 218-226.
[2] 张小明, 薛铜龙. 具有初应力的多层空心圆柱体中的导波[J]. 工程力学, 2014, 31(8): 223-229.
[3] 张小明,王裕清,禹建功. 粘弹正交各向异性空心圆柱体周向SH波[J]. 工程力学, 2013, 30(3): 78-81,119.
[4] 吴 斌;禹建功;何存富. 正交各向异性空心圆柱体中的周向超声导波[J]. 工程力学, 2007, 24(8): 0-042.
[5] 崔玉玺;王正. 可逆式灯泡贯流泵转子系统的动态特性研究[J]. 工程力学, 1996, 13(2): 126-131.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 尚仁杰;郭彦林;吴转琴;张心斌;孙文波. 基于索合力线形状的车辐式结构找形方法[J]. 工程力学, 2011, 28(11): 145 -152 .
[2] 张建华;刘建军;张庆国;何玉敖. 基于平衡降阶法的结构振动模态预测控制[J]. 工程力学, 2006, 23(5): 20 -23 .
[3] 贺瑞;秦权. 产生时程分析用的高质量地面运动时程的新方法[J]. 工程力学, 2006, 23(8): 12 -18 .
[4] 沈蒲生;龚胡广. 多模态静力推覆分析及其在高层混合结构体系抗震评估中的应用[J]. 工程力学, 2006, 23(8): 69 -73 .
[5] 任宜春;易伟建. 钢筋混凝土梁的非线性振动识别研究[J]. 工程力学, 2006, 23(8): 90 -95 .
[6] 高彦斌;. 饱和软粘土一维非线性流变——固结耦合分析[J]. 工程力学, 2006, 23(8): 116 -121, .
[7] 杨学祥. 均布荷载下一端固定的文克尔地基梁的基底压力特性及其工程意义[J]. 工程力学, 2006, 23(11): 76 -79 .
[8] 王国杰;郑建岚. 混凝土结构早龄期应力相关应变现场监测与分析[J]. 工程力学, 2009, 26(9): 61 -066, .
[9] 杨雪强;李彰明;史宏彦. Lade体积屈服面模型的合理修正[J]. 工程力学, 2009, 26(11): 41 -045 .
[10] 夏 平;龙述尧;崔洪雪. 用无网格LRPIM分析中厚板的自由振动[J]. 工程力学, 2009, 26(12): 12 -016 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日