工程力学 ›› 2019, Vol. 36 ›› Issue (7): 99-108.doi: 10.6052/j.issn.1000-4750.2018.08.0285

• 土木工程学科 • 上一篇    下一篇

支主管夹角对X形圆钢管节点平面外受弯性能影响

赵必大1, 蔡扬政1, 王伟2,3   

  1. 1. 浙江工业大学建筑工程学院, 浙江, 杭州 310023;
    2. 同济大学土木工程防灾国家重点实验室, 上海 200092;
    3. 同济大学土木工程学院建筑工程系, 上海 200092
  • 收稿日期:2018-08-14 修回日期:2019-01-24 出版日期:2019-07-06 发布日期:2019-07-06
  • 通讯作者: 赵必大(1976-),男,浙江人,讲师,博士,主要从事钢结构研究(E-mail:zhaobida@126.com). E-mail:zhaobida@126.com
  • 作者简介:蔡扬政(1992-),男,浙江人,硕士生,主要从事钢结构研究(E-mail:469909934@qq.com);王伟(1977-),男,江西人,教授,博士,主要从事钢结构与组合结构研究(E-mail:weiwang@tongji.edu.cn).
  • 基金资助:
    浙江省自然科学基金项目(LY16E080012)

Effect of the brace-to-chord angle on the out-of-plane flexural behavior of unstiffened CHS X-joints

ZHAO Bi-da1, CAI Yang-zheng1, WANG Wei2,3   

  1. 1. College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China;
    2. State key laboratory for Disaster Prevention in Civil Engineering, Shanghai 200092, China;
    3. College of Civil Engineering, Tongji University, Shanghai 200092, China
  • Received:2018-08-14 Revised:2019-01-24 Online:2019-07-06 Published:2019-07-06

摘要: 应用于单层网壳结构的X形圆钢管相贯节点往往具有支主管平面内非正交、平面外夹角的几何特征。为了研究支主管平面内、平面外夹角对节点平面外受弯性能的影响,进行了支主管平面内夹角不同的两个X形节点试件的平面外受弯滞回性能试验、以及理论研究和有限元分析。研究结果表明:两个节点均表现出较好的抗震性能和变形能力,节点主要依赖主管管壁的塑性变形以及开裂后裂缝扩展来耗能;支主管平面内夹角较小时,节点域主管管壁的塑性发展更加缓慢、均匀,节点具有更高的承载力和抗震性能;支主管平面外夹角导致节点平面外抗弯弹性刚度和反向抗弯承载力降低、但增强了节点的正向抗弯承载力。

关键词: X形圆钢管相贯节点, 支主管平面内夹角, 支主管平面外夹角, 平面外抗弯性能, 延性与耗能

Abstract: Unstiffened circular hollow section (CHS) tubular X-joints, which are widely applied to single-layer reticulated shell structures, usually have the geometric characteristics of non-orthogonal in-plane angle (IPA) and non-zero out- of-plane angle (OPA) between brace and chord. To investigate the effect of the IPA and OPA on the out-of-plane flexural behavior of the X-joints, an experiment on two unstiffened CHS X-joints with different IPA under cyclic out-of-plane bending moment (OPBM) were performed, and theoretical analysis and finite element (FE) analysis were also conducted. It indicated that two joints behave excellently in deformability and seismic resistance, and the energy dissipated of the X-joints mainly rely on plastic deformation and crack propagation of the chord wall. The results also shown that the X-joints with smaller IPA have higher flexural capacity and better seismic behavior than X-joints with larger IPA, because more uniform plastic development and slower growth strain at the chord wall near to intersection for the former joints. OPA reduces the flexural elastic stiffness and the flexural capacity of the X-joints under reverse OPBM. However, OPA is conducive to strengthening the flexural capacity of the X-joints under positive OPBM.

Key words: unstiffened CHS X-joints, in-plane angle (IPA) between brace and chord, out-of-plane angle (OPA) between brace and chord, out-of-plane flexural behavior, ductility and energy dissipation

中图分类号: 

  • TU392.3
[1] 王伟, 陈以一, 杜纯领, 等. 上海光源工程屋盖钢管节点平面外受弯性能试验研究[J]. 建筑结构学报, 2009, 30(1):75-81. Wang Wei, Chen Yiyi, Du Chunling, et al. Experimental study on out-of-plane bending performance of tubular joints in steel roof for the Shanghai Synchrotron Radiation Facility[J]. Journal of Building Structures, 2009, 30(1):75-81. (in Chinese)
[2] Zhao X L, Tong L W. New development in steel tubular joints[J]. Advances in Structural Engineering, 2011, 14(4):699-708.
[3] Ran F, Ben Y. Theoretical analysis of cold-formed stainless steel tubular joints[J]. Engineering Structures, 2015, 83(2015):99-115.
[4] Zhu L, Yang K, Bai Y, etal. Capacity of steel CHS X-joints strengthened with external stiffening ring in compression[J]. Thin-Walled Structures, 2017, 115(2017):110-118.
[5] 马昕煦, 陈以一. 支方主圆T形相贯节点轴压承载力计算公式[J]. 工程力学, 2017, 34(5):163-170. Ma Xinxu, Chen Yiyi. Ultimate strength formulae for RHS-CHS T-joints under axial compression[J]. Engineering Mechanics, 2017, 34(5):163-170. (in Chinese)
[6] 沈国辉, 陈震, 郭勇, 等. 带加劲肋十字型钢管节点支管轴压的承载力研究[J]. 工程力学, 2013, 30(9):70-75. Shen Guohui, Chen Zhen, Guo Yong, et al. Bearing capacity of cross-shaped steel tubular joints with reinforced plate under brace compression[J]. Engineering Mechanics, 2013, 30(9):70-75. (in Chinese)
[7] Jia L J, Chen Y Y. Evaluation of elastic in-plane flexural rigidity of unstiffened multi-planar CHS X-joints[J]. International Journal of Steel Structures, 2014, 14(1):23-30.
[8] Hamid A, Ali Z N. Local joint flexibility of two-planar tubular DK-joints in OWTS subjected to axial loading:Parametric study of geometrical effects and design formation[J]. Ocean Engineering, 2017, 136(2017):1-10.
[9] Qin F, Fung T C, Soh C K. Hysteretic behavior of completely overlap tubular joints[J]. Journal of Constructional Steel Research, 2001, 57(2001):811-829.
[10] Wang W, Chen Y Y. Hysteretic behavior of the tubular joints under cycling loading[J]. Journal of constructional Steel Research, 2007, 63(2007):1384-1395.
[11] Xing J H, Chen A G, Yang Q S. In-plane bending hysteretic behavior of cruciform diaphragm welded joints with axial force[J]. Journal of constructional Steel Research, 2017, 132(2017):164-178.
[12] 常鸿飞, 夏军武, 罗梓, 等. 覆板加强的方钢管T形节点轴向滞回性能试验研究[J]. 建筑结构学报, 2017, 38(5):20-26. Chang Hongfei, Xia Junwu, Luo Zi, et al. Axial hysteretic behavior test of doubler plate reinforced square tubular T-joints[J]. Journal of Building Structures, 2017, 38(5):20-26. (in Chinese)
[13] 程斌, 钱沁. 方型鸟嘴式T形方管节点的应力集中特性研究[J]. 土木工程学报, 2015, 48(5):1-10. Cheng Bin, Qian Qin. Study on stress concentration characteristics of square bird-beak square-hollow-section T-joints[J]. China Civil Engineering Journal, 2015, 48(5):1-10. (in Chinese)
[14] 孟宪德, 王伟, 陈以一, 等. X形厚壁圆管相贯节点平面外受弯抗震性能试验研究[J]. 建筑结构学报, 2009, 30(5):126-131. Meng Xiande, Wang Wei, Chen Yiyi, et al. Research on seismic behavior of unstiffened thick-walled tubular X-joints under out-of-plane bending[J]. Journal of Building Structures, 2009, 30(5):126-131. (in Chinese)
[15] Choo Y S, Qian X D, Liew J Y R, et al. Static strength of thick-walled CHS X-joints Part I. New approach in strength definition[J]. Journal of Constructional Steel Research, 2007, 59(2007):1201-1228.
[16] 陈以一, 赵必大, 王伟, 等. 平面KK型圆钢管相贯节点平面外受弯性能研究[J]. 土木工程学报, 2010, 43(11):8-16. Chen Yiyi, Zhao Bida, Wang Wei, et al. Hysteretic property of unstiffened, CHS KK-joints under cyclic out-plane bending[J]. China Civil Engineering Journal, 2010, 43(11):8-16. (in Chinese)
[17] GB 50661-2011, 钢结构焊接规范[S]. 北京:中国建筑工业出版社, 2012. GB 50661-2011, Technical specification for welding of steel structure of building[S]. Beijing:China Architecture Industry Press, 2012. (in Chinese)
[18] CECS 280-2010, 钢管结构技术规程[S]. 北京:中国计划出版社, 2011. CECS 280-2010, Technical specification for structures with steel hollow section[S]. Beijing:China Planning Press, 2011. (in Chinese)
[19] Togo T. Experimental study on mechanical behavior of tubular joints[D]. Osaka:Osaka University, 1967.
[20] Kurobane Y, Makino Y, Ochi K. Ultimate resistance of unstiffened tubular joints[J]. Journal of Structural Engineering, 1984, 110(2):385-400.
[21] JGJ/T 101-2015, 建筑抗震试验规程[S]. 北京:中国建筑工业出版社, 2015. JGJ/T 101-2015, Specification for seismic test of buildings[S]. Beijing:China Architecture Industry Press, 2015. (in Chinese)
[22] EN1993-1-8, Eurocode 3:Design of steel structures, Part 1-8:Design of joints[S]. Brussels:European Committee for Standardization, 2005.
[43] Kumar S, Barai S V. Equivalence between stress intensity factor and energy approach based fracture parameters of concrete[J]. Engineering Fracture Mechanics, 2009, 76(9):1357-1372.
[44] DL/T 5332-2005, 水工混凝土断裂试验规程[S]. 北京:中国电力出版社, 2006. DL/T 5332-2005, Norm for fracture test of hydraulic concrete[S]. Beijing:China Power Press, 2006. (in Chinese)
[45] Xu S L, Reinhardt H W. Determination of double-K criterion for crack propagation in quasi-brittle fracture, Part Ⅱ:Analytical evaluating and practical measuring methods for three-point bending notched beams[J]. International Journal of Fracture, 1999, 98(2):151-177.
[46] 管俊峰, 胡晓智, 王玉锁, 等. 用边界效应理论考虑断裂韧性和拉伸强度对破坏的影响[J]. 水利学报, 2016, 47(10):1298-1306. Guan Junfeng, Hu Xiaozhi, Wang Yusuo, et al. Effect of fracture toughness and tensile strength on fracture based on boundary effect theory[J]. Journal of Hydraulic Engineering, 2016, 47(10):1298-1306. (in Chinese)
[47] Liu X Y, Li Z C. Determining double-K fracture parameters of concrete only by the measured peak load[J]. Theoretical and Applied Fracture Mechanics, 2016, 85:412-423.
[48] Qing L B, Nie Y T, Wang J, et al. A simplified extreme method for determining double-K fracture parameters of concrete using experimental peak load[J]. Fatigue & Fracture of Engineering Materials & Structures, 2017, 40(2):254-266.
[1] 王连广;贾连光;张海霞. 钢骨高强混凝土边节点抗震性能试验研究[J]. 工程力学, 2005, 22(1): 182-186.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日