工程力学 ›› 2019, Vol. 36 ›› Issue (6): 1-12.doi: 10.6052/j.issn.1000-4750.2018.07.ST09

• 综述 •    下一篇

地震工程:从抗震、减隔震到可恢复性

周颖, 吴浩, 顾安琪   

  1. 同济大学土木工程防灾国家重点实验室, 上海 200092
  • 收稿日期:2018-07-23 修回日期:2019-01-04 出版日期:2019-06-25 发布日期:2019-05-31
  • 通讯作者: 周颖(1978-),女,山东人,教授,博士,博导,主要从事工程结构抗震与防灾研究(E-mail:yingzhou@tongji.edu.cn). E-mail:yingzhou@tongji.edu.cn
  • 作者简介:吴浩(1986-),男,浙江人,助理研究员,博士,主要从事工程结构抗震与防灾研究(E-mail:wuhaotimothy@hotmail.com);顾安琪(1993-),女,浙江人,博士生,主要从事工程结构抗震与防灾研究(E-mail:guanqi@tongji.edu.cn).
  • 基金资助:
    国家重点研发计划项目(2016YFC0701101)

EARTHQUAKE ENGINEERING: FROM EARTHQUAKE RESISTANCE, ENERGY DISSIPATION, AND ISOLATION, TO RESILIENCE

ZHOU Ying, WU Hao, GU An-qi   

  1. State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China
  • Received:2018-07-23 Revised:2019-01-04 Online:2019-06-25 Published:2019-05-31

摘要: 近年我国地震工程研究的发展呈现从抗震、减隔震走向可恢复功能的趋势。地震可恢复功能可定义为:受到地震动输入扰动后,结构、系统、城市具有可恢复功能的能力。对于工程结构而言,地震可恢复功能结构不仅要求结构在地震作用下保护生命,而且要求结构在震后快速恢复,减少对正常使用的影响。该文首先介绍了地震可恢复功能的基本概念,围绕地震可恢复功能结构,从设防目标、规范标准、结构体系、设计方法、性能指标以及工程应用等方面阐述了可恢复功能结构的特点及其与传统抗震结构的区别,最后对可恢复功能结构的未来进行了展望。

关键词: 地震工程, 抗震结构, 消能减震, 隔震结构, 可恢复功能结构

Abstract: In recent years, the research on earthquake engineering in our country showed a tendency of development from earthquake resistance, energy dissipation, and isolation to resilience. Earthquake resilience can be defined as the capability of restoring the function for a structure, a system or a city after it has been interrupted by an earthquake event. In respect of structures, an earthquake resilient structure should not only protect life safety during a seismic event, but also restore its function quickly enough after the earthquake in order to minimize the influence to immediate occupancy. The fundamental concepts of earthquake resilience are introduced first. After that, the characteristics of an earthquake resilient structure and its uniqueness compared to a conventional structure are addressed over the aspects of seismic fortification objective, design code and standard, structural systems, design methods, performance indexes and project applications. Lastly, the direction of future development for earthquake resilient structures is forecasted.

Key words: earthquake engineering, seismic structure, energy dissipation, seismic isolated structure, resilient structure

中图分类号: 

  • TU315.9
[1] 周颖, 吕西林. 摇摆结构及自复位结构研究综述[J]. 建筑结构学报, 2011, 32(9):1-10. Zhou Ying, Lü Xilin. State-of-the-art on rocking and self-centering structures[J]. Journal of Building Structures, 2011, 32(9):1-10. (in Chinese)
[2] GB 50011-2010, 建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50011-2010, Code for seismic design of buildings[S]. Beijing:China Architecture and Building Press, 2010. (in Chinese)
[3] 中华人民共和国住房和城乡建设部. 建筑隔震设计标准[S]. 征求意见稿, 2018. Ministry of Housing and Urban-Rural Development of the People's Republic of China (MOHURD). Code of design for seismic isolated buildings[S]. Draft Standard for Comments, 2018. (in Chinese)
[4] JGJ 297-2013, 建筑消能减震技术规程[S]. 北京:中国建筑工业出版社, 2013. JGJ 297-2013, Technical specification for seismic energy dissipation of buildings[S]. Beijing:China Architecture and Building Press, 2013. (in Chinese)
[5] 国家自然科学基金委员会. "重大工程的动力灾变" 重大研究计划结束[EB/OL]. http://www.nsfc.gov.cn/publish/portal0/tab38/info53598.htm, 2016-12-30. National Natural Science Foundation of China (NSFC). The completion of NSFC major research plan "dynamic disaster evolution of major engineering structures"[EB//OL]. http://www.nsfc.gov.cn/publish/portal0/tab38/info53598.htm, 2016-12-30. (in Chinese)
[6] 吕西林, 全柳萌, 蒋欢军. 从16届世界地震工程大会看可恢复功能抗震结构研究趋势[J]. 地震工程与工程振动, 2017, 37(3):1-9. Lü Xilin, Quan Liumeng, Jiang Huanjun. Research trend of earthquake resilient structures seen from 16WCEE[J]. Earthquake Engineering and Engineering Dynamics, 2017, 37(3):1-9. (in Chinese)
[7] 吕西林, 陈云, 毛苑君. 结构抗震设计的新概念-可恢复功能结构[J]. 同济大学学报(自然科学版), 2011, 39(7):941-947. Lü Xilin, Chen Yun, Mao Yuanjun. New concept of structural seismic design:earthquake resilient structures[J]. Journal of Tongji University (Natural Science), 2011, 39(7):941-947. (in Chinese)
[8] PEER. Report of the seventh joint planning meeting of NEES/E-Defense collaborative research on earthquake engineering[R]. PEER 2010/109, UC Berkeley, Berkeley, CA, 2010.
[9] Australian Earthquake Engineering Society. Tenth Pacific Conference on Earthquake Engineering:Building an Earthquake-Resilient Pacific[EB/OL]. https://aees.org.au/10pcee,2015-11-06-2015-11-08.
[10] Pacific Earthquake Engineering Research Center (PEER). 2016 PEER Annual Meeting[EB/OL]. https://peer.berkeley.edu/2016-peer-annual-meeting-presentations-website, 2016-01-28-2016-01-29.
[11] European Commission's Joint Research Centre (JRC). The 1st International Workshop on Resilience in Torino[EB/OL]. http://www.workshop-torino2016.resiltronics.org/index.html, 2016-09-20-2016-09-22.
[12] Southeast University, Tongji University. The 2nd International Workshop on Resilience in Nanjing and Shanghai[EB/OL]. http://www.workshop-china2018.resiltronics.org, 2018-10-31-2018-11-02.
[13] New Zealand Society for Earthquake Engineering (NZSEE), Anti-Seismic Systems International Society (ASSISi). The 15th World Conference on Seismic Isolation Energy Dissipation and Active Vibration Control of Structures[EB/OL]. http://www.confer.co.nz/nzsee2017, 2017-04-27-2017-04-29.
[14] Cimellaro G P, Reinhorn A M, Bruneau M. Seismic resilience of a hospital system[J]. Structure and Infrastructure Engineering, 2010, 6(1/2):127-144.
[15] GB 18306-2015, 中国地震动参数区划图[S]. 北京:中国质检出版社, 2015. GB 18306-2015, Seismic ground motion parameters zonation map of China[S]. Beijing:China Zhijian Publishing House, 2015. (in Chinese)
[16] 周颖, 顾安琪. 自复位剪力墙结构四水准抗震设防下基于位移抗震设计方法[J]. 建筑结构学报, 2018, 40(3):118-126. Zhou Ying, Gu Anqi. Displacement-based seismic design of self-centering shear walls under four-level seismic fortifications[J]. Journal of Building Structures, 2018, 40(3):118-126. (in Chinese)
[17] ACI T1.2-03, Special hybrid moment frames composed of discretely jointed precast and post-tensioned concrete members[S]. MI, USA, Farmington Hills:American Concrete Institute (ACI), 2003.
[18] ACI ITG-5.1-07, Acceptance criteria for special unboned post-tensioned precast structural walls based on validation testing and commentary[S]. MI, USA, Farmington Hills:American Concrete Institute (ACI), 2007.
[19] ACI ITG-5.2-09, Design of a special unbonded post-tensioned precast shear wall satisfying ACI ITG-5.2 requirements[S]. MI, USA, Farmington Hills:American Concrete Institute (ACI), 2009.
[20] NZ Concrete Society Inc. PRESSS design handbook[M]. Auckland, New Zealand:NZ Concrete Society Inc, 2010:1-89.
[21] NZS 3101, Concrete structures standard:Part 1-The design of concrete structures[S]. Wellington, New Zealand:Standards New Zealand, 2006.
[22] Precast/Prestressed Concrete Institute (PCI). PCI design handbook[M]. 7th edition. Chicago, USA:PCI, 2010:3-1-3-63.
[23] Eatherton M R, Ma X, Krawinkler H, et al. Quasi-static cyclic behavior of controlled rocking steel frames[J]. Journal of Structural Engineering, ASCE, 2014, 140(11):04014083-1-04014083-1.
[24] 曲哲, 和田章, 叶列平. 摇摆墙在框架结构抗震加固中的应用[J]. 建筑结构学报, 2011, 32(9):11-19. Qu Zhe, Wada Akira, Ye Lieping. Seismic retrofit of frame structure using rocking wall system[J]. Journal of Buildings Structures, 2011, 32(9):11-19. (in Chinese)
[25] 吴守君, 潘鹏, 张鑫. 框架-摇摆墙结构受力特点分析及其在抗震加固中的应用[J]. 工程力学, 2016, 33(6):54-60, 67. Wu Shoujun, Pan Peng, Zhang Xin. Characteristics of frame rocking wall structure and its application in aseismic retrofit[J]. Engineering Mechanics, 2016, 33(6):54-60, 67. (in Chinese)
[26] Qu B, Sanchez-Zamora F, Pollino M. Mitigation of inter-story drift concentration in multi-story steel concentrically braced frames through implementation of rocking cores[J]. Engineering Structures, 2014, 70:208-217.
[27] Blebo F C, Roke D A. Seismic-resistant self-centering rocking core system[J]. Engineering Structures, 2015, 101:193-204.
[28] Wu S, Pan P, Nie X, et al. Experimental investigation on reparability of an infilled rocking wall frame structure[J]. Earthquake Engineering and Structural Dynamics, 2017, 46(15):2777-2792.
[29] Wang X T, Wang T, Qu Z. An experimental study of a damage-controllable plastic-hinge-supported wall structure[J]. Earthquake Engineering and Structural Dynamics, 2018, 47(3):594-612.
[30] Kurama Y C, Sause R, Pessiki S, et al. Lateral load behavior and seismic design of unbonded posttensioned precast concrete walls[J]. ACI Structural Journal, 1999, 96(4):622-632.
[31] Perez F J, Sause R, Pessiki S. Analytical and experimental lateral load behavior of unbonded posttensioned precast concrete walls[J]. Journal of Structural Engineering, 2007, 133(11):1531-1540.
[32] Perez F J, Pessiki S, Sause R. Experimental lateral load response of unbonded post-tensioned precast concrete walls[J]. ACI Structural Journal, 2013, 110(6):1045-1056.
[33] Laursen P T, Ingham J M. Structural testing of enhanced post-tensioned concrete masonry walls[J]. ACI Structural Journal, 2004, 101(6):852-862.
[34] Wight G D, Ingham J M, Kowalsky M J. Shake table testing of rectangular post-tensioned concrete masonry walls[J]. ACI Structural Journal, 2006, 103(4):587-595.
[35] Marriott D, Pampanin S, Palermo A. Quasi-static and pseudo-dynamic testing of unbonded post-tensioned rocking bridge piers with external replaceable dissipaters[J]. Earthquake Engineering and Structural Dynamics, 2009, 38(3):331-354.
[36] Clayton P M, Berman J W, Lowes L N. Subassembly testing and modeling of self-centering steel plate shear walls[J]. Engineering Structures, 2013, 56:1848-1857.
[37] 吕西林, 崔晔, 刘兢兢. 自复位钢筋混凝土框架结构振动台试验研究[J]. 建筑结构学报, 2014, 35(1):19-26. Lü Xilin, Cui Ye, Liu Jingjing. Shaking table test of a self-centering reinforced concrete frame[J]. Journal of Building Structures, 2014, 35(1):19-26. (in Chinese)
[38] Lu X L, Cui Y, Liu J J, et al. Shaking table test and numerical simulation of a 1/2-scale self-centering reinforced concrete frame[J]. Earthquake Engineering and Structural Dynamics, 2015, 44(12):1899-1917.
[39] Cui Y, Lu X L, Jiang C. Experimental investigation of tri-axial self-centering reinforced concrete frame structures through shaking table tests[J]. Engineering Structures, 2017, 132:684-694.
[40] 郭彤, 宋良龙, 张国栋, 等. 腹板摩擦式自定心预应力混凝土框架梁柱节点的试验研究[J]. 土木工程学报, 2012, 45(6):23-32. Guo Tong, Song Lianglong, Zhang Guodong, et al. Experimental study on beam-column connections of self-centering prestressed concrete frame with web friction devices[J]. China Civil Engineering Journal, 2012, 45(6):23-32. (in Chinese)
[41] 毛晨曦, 于樵, 张昊宇, 等. 预应力自复位钢筋混凝土柱及梁柱节点拟静力试验研究[J]. 自然灾害学报, 2017, 26(6):1-12. Mao Chenxi, Yu Qiao, Zhang Haoyu, et al. Pseudo-static tests of prestressed self-centering reinforced concrete column and beam-column joints[J]. Journal of Natural Disasters, 2017, 26(6):1-12. (in Chinese)
[42] 鲁亮, 李鸿, 刘霞, 等. 梁端铰型受控摇摆式钢筋混凝土框架抗震性能振动台试验研究[J]. 建筑结构学报, 2016, 37(3):59-66. Lu Liang, Li Hong, Liu Xia, et al. Shaking table test on seismic performance of controlled rocking reinforced concrete frame[J]. Journal of Building Structures, 2016, 37(3):59-66. (in Chinese)
[43] Darling S C. Seismic response of short period structures and the development of a self-centering truss moment frame with energy-dissipating elements for improved performance[D]. Blacksburg, Virginia:Virginia Polytechnic Institute and State University, 2012.
[44] Holden T, Restrepo J, Mander J B. Seismic performance of precast reinforced and prestressed concrete walls[J]. Journal of Structural Engineering, 2003, 129(3):286-296.
[45] Smith B J, Kurama Y C, McGinnis M J. Behavior of precast concrete shear walls for seismic regions:Comparison of hybrid and emulative specimens[J]. Journal of Structural Engineering, 2013, 139(11):1917-1927.
[46] 吴浩, 吕西林, 蒋欢军, 等. 预应力预制混凝土剪力墙抗震性能试验研究[J]. 建筑结构学报, 2016, 37(5):208-217. Wu Hao, Lü Xilin, Jiang Huanjun, et al. Experimental study on seismic performance of prestressed precast concrete shear walls[J]. Journal of Building Structures, 2016, 37(5):208-217. (in Chinese)
[47] 党像梁, 吕西林, 周颖. 底部开水平缝预应力自复位剪力墙试验研究及数值模拟[J]. 地震工程与工程振动, 2014, 34(4):154-161. Dang Xiangliang, Lü Xilin, Zhou Ying. Experimental study and numerical simulation of self-centering shear walls with horizontal bottom slits[J]. Earthquake Engineering and Engineering Dynamics, 2014, 34(4):154-161. (in Chinese)
[48] Gu A Q, Zhou Y, Xiao Y, et al. Experimental study and parameter analysis on the seismic performance of self-centering hybrid reinforced concrete shear walls[J]. Soil Dynamics and Earthquake Engineering, 2019, 116:409-420.
[49] Pakiding L, Pessiki S, Sause R, et al. Lateral load response of unboned post-tensioned cast-in-place concrete walls[C]//American Society of Civil Engineering (ASCE). Proceeding of ASCE Structures Congress 2015. Portland, OR:ASCE, 2015:1338-1349.
[50] Lin Y C, Sause R, Ricles J. Seismic performance of a large-scale steel self-centering moment-resisting frame:MCE hybrid simulations and quasi-static pushover tests[J]. Journal of Structural Engineering, 2012, 139(7):1227-1236.
[51] Lin Y C, Sause R, Ricles J M. Seismic performance of steel self-centering, moment-resisting frame:Hybrid simulations under design basis earthquake[J]. Journal of Structural Engineering, 2013, 139(11):1823-1832.
[52] Zhu S Y, Zhang Y F. Seismic behaviour of self-centring braced frame buildings with reusable hysteretic damping brace[J]. Earthquake Engineering and Structural Dynamics, 2007, 36(10):1329-1346.
[53] Eatherton M R, Hajjar J F. Hybrid simulation testing of a self-centering rocking steel braced frame system[J]. Earthquake Engineering and Structural Dynamics, 2014, 43(11):1725-1742.
[54] Lu X L, Yang B Y, Zhao B. Shake-table testing of a self-centering precast reinforced concrete frame with shear walls[J]. Earthquake Engineering and Engineering Vibration, 2018, 17(2):221-233.
[55] 吕西林, 陈聪. 带有可更换构件的结构体系研究进展[J]. 地震工程与工程振动, 2014, 34(1):27-36. Lü Xilin, Chen Cong. Research progress in structural systems with replaceable members[J]. Earthquake Engineering and Engineering Mechanics, 2014, 34(1):27-36. (in Chinese)
[56] 吕西林, 陈云, 蒋欢军. 带可更换连梁的双肢剪力墙抗震性能试验研究[J]. 同济大学学报(自然科学版), 2014, 42(2):175-182. Lü Xilin, Chen Yun, Jiang Huanjun. Experimental study on seismic performance of coupled shear wall structure with replaceable coupling beams[J]. Journal of Tongji University (Natural Science), 2014, 42(2):175-182. (in Chinese)
[57] 吕西林, 陈聪. 设置可更换连梁的双筒体混凝土结构振动台试验研究[J]. 建筑结构学报, 2017, 38(8):45-54. Lü Xilin, Chen Cong. Shaking table tests of double tube concrete structure with replaceable coupling beams[J]. Journal of Building Structures, 2017, 38(8):45-54. (in Chinese)
[58] Ji X D, Liu D, Sun Y, et al. Seismic performance assessment of a hybrid coupled wall system with replaceable steel coupling beams versus traditional RC coupling beams[J]. Earthquake Engineering and Structural Dynamics, 2017, 46(4):517-535.
[59] 毛苑君, 吕西林. 带可更换墙脚构件剪力墙的低周反复加载试验[J]. 中南大学学报(自然科学版), 2014, 45(6):2029-2040. Mao Yuanjun, Lü Xilin. Quasi-static cyclic tests of RC shear wall with replaceable foot parts[J]. Journal of Central South University (Science and Technology), 2014, 45(6):2029-2040. (in Chinese)
[60] 刘其舟, 蒋欢军. 新型可更换墙脚部件剪力墙设计方法及分析[J]. 同济大学学报(自然科学版), 2016, 44(1):37-44. Liu Qizhou, Jiang Huanjun. Design method of new type of reinforced concrete shear wall with replaceable corner components and its analysis[J]. Journal of Tongji University (Natural Science), 2016, 44(1):37-44. (in Chinese)
[61] Federal Emergency Management Agency (FEMA). NEHRP guidelines and commentary for seismic rehabilitation of buildings, FEMA 273[R]. Washington, DC:Federal Emergency Management Agency, 1997.
[62] Federal Emergency Management Agency (FEMA). Prestandard and commentary for the seismic rehabilitation of buildings, FEMA 356[R]. Washington, DC:Federal Emergency Management Agency, 2000.
[63] Federal Emergency Management Agency (FEMA). Next-generation performance-based seismic design guidelines:program plan for new and existing buildings, FEMA 445[R]. Washington, DC:Federal Emergency Management Agency, 2007.
[64] Chopra A K, Goel R K. Direct displacement-based design:Use of inelastic vs. elastic design spectra[J]. Earthquake Spectra, 2001, 17(1):47-64.
[65] 马宏旺. 一种直接基于位移的抗震设计方法[J]. 地震工程与工程振动, 2007, 27(2):45-50. Ma Hongwang. A direct displacement-based seismic design method[J]. Earthquake Engineering and Engineering Vibration, 2007, 27(2):45-50. (in Chinese)
[66] Akbas B, Shen J, Hao H. Energy approach in performance-based seismic design of steel moment resisting frames for basic safety objective[J]. Structural Design of Tall buildings, 2001, 10(3):193-217.
[67] 叶列平, 缪志伟, 程光煜, 等. 建筑结构基于能量抗震设计方法研究[J]. 工程力学, 2014, 31(6):1-12. Ye Lieping, Miao Zhiwei, Cheng Guangyu, et al. Study on the energy-based seismic design method of building structures[J]. Engineering Mechanics, 2014, 31(6):1-12. (in Chinese)
[68] Priestley M J N, Calvi G M, Kowalsky M J. Displacement-based seismic design of structures[M]. Pavia, Italy:IUSS Press, 2007:1-132.
[69] Priestley M J N. Direct displacement-based design of precast/prestressed concrete buildings[J]. PCI Journal, 2002, 47(6):66-79.
[70] Pennucci D, Calvi G M, Sullivan T J. Displacement-based design of precast walls with additional dampers[J]. Journal of Earthquake Engineering, 2009, 13(sup1):40-65.
[71] 杨博雅, 吕西林. 预应力预制混凝土剪力墙结构直接基于位移的抗震设计方法及应用[J]. 工程力学, 2018, 35(2):59-66,75. Yang Boya, Lü Xilin. Direct displacement-based aseismic design and application for prestressed precast concrete shear-wall structures[J]. Engineering Mechanics, 2018, 35(2):59-66,75. (in Chinese)
[72] Rahman M A, Sritharan S. An evaluation of force-based design vs. direct displacement-based design of jointed precast post-tensioned wall systems[J]. Earthquake Engineering and Structural Dynamics, 2006, 5(2):285-296.
[73] Federal Emergency Management Agency (FEMA). Seismic performance assessment of buildings, volume I:methodology, FEMA P-58[R]. Washington, DC:Federal Emergency Management Agency, 2012.
[74] Wada A, Qu Z, Ito H, et al. Seismic retrofit using rocking walls and steel dampers[C]//American Society of Civil Engineering(ASCE). ATC & SEI Conference on Improving the Seismic Performance of Existing Buildings and Other Structures, San Francisco, USA:ASCE, 2009:1010-1021.
[75] 曲哲, 和田章, 叶列平. 摇摆墙在框架结构抗震加固中的应用[J]. 建筑结构学报, 2011, 32(9):11-19. Qu Zhe, Wada Akira, Ye Lieping. Seismic retrofit of frame structures using rocking wall system[J]. Journal of Building Structures, 2011, 32(9):11-19. (in Chinese)
[76] Cattanach A, Pampanin S. 21st Century precast:the detailing and manufacture of NZ's first multi-storey PRESSS building[C]//New Zealand Concrete Industry. Proceedings of New Zealand Concrete Industry Conference, Rotorua, New Zealand:New Zealand Concrete Industry, 2008.
[77] Kam W Y, Pampanin S. The seismic performance of RC buildings in the 22 February 2011 Christchurch earthquake[J]. Structural Concrete, 2011, 12(4):223-233.
[78] Latham D A, Reay A M, Pampanin S. Kilmore street medical centre:application of an advanced flag-shape steel rocking system[C]//New Zealand Society for Earthquake Engineering (NZSEE). NZSEE Annual Conference 2013, Wellington, New Zealand:NZSEE, 2013:1-15.
[79] 吕西林, 周颖, 陈聪. 可恢复功能抗震结构新体系研究进展[J]. 地震工程与工程振动, 2014, 34(4):130-139. Lü Xilin, Zhou Ying, Chen Cong. Research progress on innovative earthquake-resilient structural systems[J]. Earthquake Engineering and Engineering Mechanics, 2014, 34(4):130-139. (in Chinese)
[80] 纪晓东, 刘丹, Hutt C M. 新型混合联肢墙高层建筑震后可恢复力评价[C]//中国地球物理学会. 中国地球科学联合学术年会会议论文集, 北京:中国地球物理学会, 2017:3438-3440. Ji Xiaodong, Liu Dan, Hutt C M. Assessment of post-earthquake resilience for innovative hybrid coupled walls in tall buildings[C]//Chinese Geophysical Society. Proceedings of Annual Meeting of Chinese Geoscience Union (CGU). Bejing:Chinese Geophysical Society, 2017:3438-3440. (in Chinese)
[1] 曹胜涛, 李志山, 刘付钧, 黄忠海. 基于Bouc-Wen模型的消能减震结构显式非线性时程分析[J]. 工程力学, 2019, 36(S1): 17-24.
[2] 杜永峰, 时晨. 多向动力耦合激励下隔震结构连续倒塌性能分析[J]. 工程力学, 2019, 36(6): 248-256.
[3] 贾明明, 周洲, 吕大刚, 杨宁. 摇摆桁架-BRB-钢框架体系地震失效模式与抗震性能分析[J]. 工程力学, 2018, 35(S1): 73-79.
[4] 杨参天, 解琳琳, 李爱群, 曾德民, 刘立德. 适用于高层隔震结构的地震动强度指标研究[J]. 工程力学, 2018, 35(8): 21-29.
[5] 兰香, 潘文, 白羽, 张龙飞, 余文正. 基于支撑刚度的消能减震结构最优阻尼参数研究[J]. 工程力学, 2018, 35(8): 208-217.
[6] 李万润, 王辉, 孙玉萍, 杜永峰, 王雪平, 吴忠铁. 考虑隔震支座特性的隔震结构多尺度模拟与试验验证[J]. 工程力学, 2018, 35(6): 115-122,131.
[7] 周颖, 龚顺明. 混合非线性黏弹性阻尼器非线性特征与力学模型研究[J]. 工程力学, 2018, 35(6): 132-143.
[8] 朱立华, 李钢, 李宏男. 考虑结构损伤的消能减震结构能量设计方法[J]. 工程力学, 2018, 35(5): 75-85.
[9] 孙彤, 李宏男. 新型多维形状记忆合金阻尼器的试验研究[J]. 工程力学, 2018, 35(3): 178-185.
[10] 党育, 张辙洵, 李涌涛, 谢鹏飞. 基于概率统计方法的隔震结构可靠度[J]. 工程力学, 2018, 35(11): 146-154.
[11] 吴迪, 李健军, 谭平, 熊焱, 霍维刚. 串联隔震结构体系的地震易损性分析[J]. 工程力学, 2017, 34(增刊): 227-232.
[12] 杜永峰, 郑文智, 李万润, 李慧, 王浩. 超长复杂基础隔震结构静动力特性温度相关性研究[J]. 工程力学, 2017, 34(7): 69-78.
[13] 江学良, 牛家永, 连鹏远, 文畅平, 王飞飞. 含小净距隧道岩石边坡地震动力特性的大型振动台试验研究[J]. 工程力学, 2017, 34(5): 132-141,147.
[14] 卢德辉, 周云, 邓雪松, 张超. 钢管铅阻尼器构造优化及模拟分析[J]. 工程力学, 2017, 34(3): 76-83.
[15] 曾翔, 刘诗璇, 许镇, 陆新征. 基于FEMA-P58方法的校园建筑地震经济损失预测案例分析[J]. 工程力学, 2016, 33(增刊): 113-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 原 园;徐颖强;吕国志;朱贤飞. 齿轮啮合过程中安定状态残余应力的数值方法研究[J]. 工程力学, 2008, 25(10): 0 -211, .
[2] 张冬娟;崔振山;李玉强;阮雪榆. 平面应变板料拉弯成形回弹理论分析[J]. 工程力学, 2007, 24(7): 0 -071 .
[3] 张伯艳;陈厚群. LDDA动接触力的迭代算法[J]. 工程力学, 2007, 24(6): 0 -006 .
[4] 李宗利;杜守来. 高渗透孔隙水压对混凝土力学性能的影响试验研究[J]. 工程力学, 2011, 28(11): 72 -077 .
[5] 姜亚洲;任青文;吴晶;杜小凯. 基于双重非线性的混凝土坝极限承载力研究[J]. 工程力学, 2011, 28(11): 83 -088 .
[6] 赵同峰;欧阳伟;郝晓彬. 方钢管钢骨高强混凝土压弯剪承载力分析[J]. 工程力学, 2011, 28(11): 153 -158, .
[7] 张慕宇;杨智春;王乐;丁燕. 复合材料梁结构损伤定位的无参考点互相关分析方法[J]. 工程力学, 2011, 28(11): 166 -169 .
[8] 尚仁杰;郭彦林;吴转琴;张心斌;孙文波. 基于索合力线形状的车辐式结构找形方法[J]. 工程力学, 2011, 28(11): 145 -152 .
[9] 郭佳民;董石麟;袁行飞. 随机缺陷模态法在弦支穹顶稳定性计算中的应用[J]. 工程力学, 2011, 28(11): 178 -183 .
[10] 祝效华;王宇;童华;刘应华. 基于弹塑性力学的油气井打捞公锥造扣全过程分析和评价[J]. 工程力学, 2011, 28(11): 184 -189 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日