工程力学 ›› 2019, Vol. 36 ›› Issue (9): 1-11,24.doi: 10.6052/j.issn.1000-4750.2018.07.ST08

• 综述 •    下一篇

第二代基于性能地震工程中的地震易损性模型及正逆概率风险分析

吕大刚1,2, 刘洋3, 于晓辉1,2   

  1. 1. 哈尔滨工业大学结构工程灾变与控制教育部重点实验室, 黑龙江, 哈尔滨 150090;
    2. 哈尔滨工业大学土木工程智能防灾减灾工业与信息化部重点实验室, 哈尔滨 150090;
    3. 四川大学建筑与环境学院, 成都 610065
  • 收稿日期:2017-07-23 修回日期:2018-12-18 出版日期:2019-09-25 发布日期:2019-01-22
  • 通讯作者: 吕大刚(1970-),男,黑龙江铁力人,教授,博士,主要从事结构可靠度、工程风险分析、地震工程、韧性城市等研究(E-mail:ludagang@hit.edu.cn). E-mail:ludagang@hit.edu.cn
  • 作者简介:刘洋(1984-),男,天津武清人,助理研究员,博士,主要从事工程结构地震易损性及风险分析等研究(E-mail:yangliuscu@scu.edu.cn);于晓辉(1982-),男,辽宁丹东人,副研究员,博士,主要从事地震易损性和风险分析等研究(E-mail:xiaohui.yu@hit.edu.cn).
  • 基金资助:
    国家自然科学基金项目(51678209,51378162,51778198);国家科技支撑计划课题项目(2013BAJ08B01)

SEISMIC FRAGILITY MODELS AND FORWARD-BACKWARD PROBABILISTIC RISK ANALYSIS IN SECOND-GENERATION PERFORMANCE-BASED EARTHQUAKE ENGINEERING

Lü Da-gang1,2, LIU Yang3, YU Xiao-hui1,2   

  1. 1. Key Lab of Structure Dynamic Behavior and Control of China Ministry of Education, Harbin Institute of Technology, Harbin 150090, China;
    2. Key Lab of Smart Prevention and Mitigation of Civil Engineering Disaster of the Ministry of Industry and Information Technology, Harbin Institute of Technology, Harbin 150090, China;
    3. College of Architecture & Environment, Sichuan University, Chengdu 610065, China
  • Received:2017-07-23 Revised:2018-12-18 Online:2019-09-25 Published:2019-01-22

摘要: 第二代基于性能地震工程理论中的地震易损性主要是指结构构件以及非结构构件的抗震能力,与传统地震风险理论中的地震易损性定义和内涵并不相同。为了澄清二者的不一致性,首先介绍传统地震风险理论中地震易损性的定义和概率模型,然后指出第二代基于性能地震工程理论存在五个层次的地震易损性模型:地震需求易损性模型、抗震能力易损性模型、地震损伤易损性模型、地震损失易损性模型和抗震决策易损性模型,指出了这五种模型的区别及其相互关系,推导得到了地震需求易损性模型和地震损伤易损性模型分布参数的解析表达式。在此基础上,根据不同的不确定性传递路径,提出了正向PBEE和逆向PBEE的概念,以通过不同方式求解第二代基于性能地震工程理论的风险积分公式。基于地震危险性函数的近似表达式以及地震易损性模型及其分布参数的解析表达式,通过正向PBEE和逆向PBEE方法,分别得到了具有相同表达形式的工程需求参数EDP、地震损伤DM和决策变量DV三个层次的概率地震风险表达式。通过该文的研究,将传统地震风险分析理论与第二代基于性能地震工程理论统一在一致的理论框架之中。

关键词: 基于性能地震工程, 地震风险, 地震易损性, 地震危险性, 地震需求, 抗震能力, 地震损伤, 抗震决策

Abstract: The seismic fragility in 2nd-generation performance-based earthquake engineering (PBEE) generally refers to the seismic capacities of both structural components and non-structural components. However, this concept is different from the definition and the content of seismic fragility in traditional seismic risk theory. To clarify the differences between the two fragility definitions, the definition and its probabilistic model for seismic fragility in traditional seismic risk theory are firstly introduced. And then, five seismic fragility models in 2nd-generation PBEE are identified:seismic demand fragility model, seismic capacity fragility model, seismic damage fragility model, seismic loss fragility model, and seismic decision fragility model. The differences and their relationships of the five seismic fragility models are pointed out. The analytical formulations for the probability models and their distribution parameters in a seismic demand fragility model and a seismic damage fragility model are derived. On the basis of the above theoretical deduce, the concepts of forward PBEE and backward PBEE are put forward according to the directions of uncertainty propagation. Through this new concept, the risk integration equation in 2nd-generation PBEE can be solved by different methods. By integrating the approximate formulation of seismic hazard and the analytical formulations of fragility probability models and their distribution parameters, the three probabilistic seismic risk formulations with the same formats for EDP, DM and DV levels are obtained via the methods of forward PBEE and backward PBEE. Through the study of this paper, the traditional seismic risk theory and the 2nd-generation PBEE are unified into a consistent theoretical framework.

Key words: performance-based earthquake engineering (PBEE), seismic risk, seismic fragility, seismic hazard, seismic demand, seismic capacity, seismic damage, seismic decisionc

中图分类号: 

  • P315.9
[1] Structural Engineers Association of California (SEAOC) Vision 2000 Committee. Performance based seismic engineering of buildings[R]. Sacramento, CA, USA:Structural Engineers Association of California, 1995.
[2] Applied Technology Council (ATC). Seismic evaluation and retrofit of concrete buildings[R]. Report No. ATC-40. Redwood City:Applied Technology Council, 1996.
[3] FEMA 273, NEHRP guidelines for the seismic rehabilitation of buildings[S]. Washington, D.C., USA:Federal Emergent Management Agency (FEMA), 1997.
[4] FEMA 350, Recommended seismic design criteria for new steel moment-frame buildings[S]. Washington, D.C, USA:Federal Emergent Management Agency (FEMA). 2000.
[5] Bertero R D, Bertero V V. Performance-based seismic engineering:The need for a reliable conceptual comprehensive approach[J]. Earthquake Engineering and Structural Dynamics, 2002, 31:627-652.
[6] Ghobarah A. Performance-based design in earthquake engineering:state of development[J]. Engineering Structures, 2001, 23:878-884.
[7] Chandler A M, Lam N T K. Performance-based design in earthquake engineering:a multidisciplinary review[J]. Engineering Structures, 2001, 23:1525-1543.
[8] CECS 160-2004, 中国地震局工程力学研究所. 建筑工程抗震性态设计通则(试用)[S]. 北京:中国计划出版社, 2004. CECS 160-2004, Institute of Engineering Mechanics, China Earthquake Administration. General rule for performance-based seismic design of buildings[S]. Beijing:China Planning Press, 2004. (in Chinese)
[9] 李刚, 程耿东. 基于性能的结构抗震设计-理论、方法及应用[M]. 北京:科学出版社, 2004. Li Gang, Cheng Gengdong. Performance-based seismic design-theory, method and application[M]. Beijing:Science Press, 2006. (in Chinese)
[10] 谢礼立, 马玉宏, 翟长海. 基于性态的抗震设防与设计地震动[M]. 北京:科学出版社, 2009. Xie Lili, Ma Yuhong, Zhai Changhai. Performance-based seismic design and design ground motion[M]. Beijing:Science Press, 2009. (in Chinese)
[11] Cornell C A, Krawinkler H. Progress and challenges in seismic performance assessment[J]. PEER Center News, 2000, 3(2):1-4.
[12] Moehle J, Deierlein G G. A framework for performance-based earthquake resistive design[C]//Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada, August 1-6, 2004, Paper No. 679.
[13] Federal Emergency Management Agency (FEMA). Seismic performance assessment of buildings[R]. Redwood City, CA, USA:Applied Technology Council, 2012.
[14] Ellingwood B R. Earthquake risk assessment of building structures[J]. Reliability Engineering and System Safety, 2001, 74:251-262.
[15] 吕大刚, 李晓鹏, 王光远. 基于可靠度和性能的结构整体地震易损性分析[J]. 自然灾害学报, 2006, 15(2):107-114. Lü Dagang, Li Xiaopeng, Wang Guangyuan. Global seismic fragility analysis of structures based on reliability and performance[J]. Journal of Natural Disasters, 2006, 15(2):107-114. (in Chinese)
[16] 吕大刚, 于晓辉, 宋鹏彦, 等. 抗震结构最优设防水平决策与全寿命优化设计的简化易损性分析方法[J]. 地震工程与工程振动, 2009, 29(4):23-32. Lü Dagang, Yu Xiaohui, Song Pengyan, et al. Simplified fragility analysis methods for optimal protection level decision-making and minimum life-cycle cost design of aseismic structures[J]. Journal of Earthquake Engineering and Engineering Vibration, 2009, 29(4):23-32. (in Chinese)
[17] 吕大刚, 于晓辉. 基于地震易损性解析函数的概率地震风险理论研究[J]. 建筑结构学报, 2013, 34(10):41-48. Lü Dagang, Yu Xiaohui. Theoretical study of probabilistic seismic risk assessment based on analytical functions of seismic fragility[J]. Journal of Building Structures, 2013, 34(10):41-48. (in Chinese)
[18] Shinozuka M, Feng M Q, Kim H, et al. Statistical analysis of fragility curves[R]. Buffalo, New York, USA:Multidisciplinary Center for Earthquake Engineering Research (MCEER), 2001.
[19] Cornell C A, Jalayer F, Hamburger R O, et al. The probabilistic basis for the 2000 SAC/FEMA steel moment frame guidelines[J]. Journal of Structural Engineering, ASCE, 2002, 128(4):526-533.
[20] 吕大刚, 于晓辉, 潘峰, 等. 基于改进云图法的结构概率地震需求分析[J]. 世界地震工程, 2010, 26(1):23-32. Lü Dagang, Yu Xiaohui, Pan Feng, et al. Probabilistic seismic demand analysis of structures based on an improved cloud method[J]. World Earthquake Engineering, 2010, 26(1):23-32. (in Chinese)
[21] Baker J W. Efficient analytical fragility function fitting using dynamic structural analysis[J]. Earthquake Spectra, 2015, 31(1):579-599.
[22] 于晓辉, 吕大刚. 基于云图-条带法的概率地震需求分析与地震易损性分析[J]. 工程力学, 2016, 33(6):68-76. Yu Xiaohui, Lü Dagang. Probabilistic seismic demand analysis and seismic fragility analysis based on a cloud-stripe method[J]. Engineering Mechanics, 2016, 33(6):68-76.(in Chinese)
[23] Vamvatsikos D, Cornell C A. Incremental dynamic analysis[J]. Earthquake Engineering and Structural Dynamics, 2002, 31(3):491-514.
[24] 吕大刚, 于晓辉, 王光远. 基于单地震动记录IDA方法的结构倒塌分析[J]. 地震工程与工程振动, 2009, 29(6):23-32. Lü Dagang, Yu Xiaohui, Wang Guangyuan. Structural collapse analysis based on single-record IDA method[J]. Journal of Earthquake Engineering and Engineering Vibration, 2009, 29(6):33-39. (in Chinese)
[25] 吕大刚, 于晓辉, 王光远. 基于FORM有限元可靠度方法的结构整体概率抗震能力分析[J]. 工程力学, 2012, 29(2):1-8. Lü Dagang, Yu Xiaohui, Wang Guangyuan. Global probabilistic seismic capacity analysis of structures based on FORM finite element reliability method[J]. Engineering Mechanics, 2012, 29(2):1-8. (in Chinese)
[26] 吕大刚, 于晓辉, 王光远. 基于MVFOSM有限元可靠度方法的结构整体概率抗震能力分析[J]. 世界地震工程, 2008, 24(2):1-8. Lü Dagang, Yu Xiaohui, Wang Guangyuan. Global probabilistic seismic capacity analysis of structures based on MVFOSM finite element reliability method[J]. World Earthquake Engineering, 2008, 24(2):1-8. (in Chinese)
[27] 吕大刚, 于晓辉, 王光远. 基于Zhou-Nowak数值积分法的结构整体概率抗震能力分析[J]. 世界地震工程, 2008, 24(3):7-13. Lü Dagang, Yu Xiaohui, Wang Guangyuan. Global probabilistic seismic capacity analysis of structures based on Zhou-Nowak numerical integration method[J]. World Earthquake Engineering, 2008, 24(3):7-13. (in Chinese)
[28] 吕大刚, 于晓辉, 王光远. 基于改进点估计法的结构整体概率抗震能力分析[J]. 世界地震工程, 2008, 24(4):7-14. Lü Dagang, Yu Xiaohui, Wang Guangyuan. Global probabilistic seismic capacity analysis based on an improved point estimation method[J]. World Earthquake Engineering, 2008, 24(4):7-14. (in Chinese)
[29] Yu X H, Lu D G, Li B. Relating seismic design level and seismic performance:A fragility-based investigation of RC frame buildings in China[J]. Journal of Performance of Constructed Facilities, ASCE, 2017, 31(5):04017075.
[30] Yu X H, Lu D G, Li B. Estimating uncertainty in limit state capacities for reinforced concrete frame structures through pushover analysis[J]. Earthquakes and Structures, 2016, 10(1):141-161.
[31] Lu D G, Yu X H, Jia M M, et al. Seismic risk assessment for a reinforced concrete frame designed according to Chinese codes[J]. Structure and Infrastructure Engineering, 2014, 10(10):1295-1310.
[32] Porter K, Kennedy R, Bachman R. Creating fragility functions for performance-based earthquake engineering[J]. Earthquake Spectra, 2007, 23(2):471-489.
[33] Liu Y, Paolacci F, Lu D G. Seismic fragility of a typical bridge using extrapolated experimental damage limit states[J]. Earthquakes and Structures, 2017, 13(6):599-611.
[34] Aslani H. Probabilistic earthquake loss estimation and loss disaggregation in buildings[D]. Stanford, CA, USA:Stanford University, 2005.
[35] 吕大刚. 结构抗震可靠度二种简化解析表达式的一致性证明[J]. 地震工程与工程振动, 2009, 29(5):59-65. Lü Dagang. Verification of consistency of two simplified analytical formulations for structural seismic reliability[J]. Journal of Earthquake Engineering and Engineering Vibration, 2009, 29(5):59-65. (in Chinese)
[36] Mackie K. Fragility-based seismic decision making for highway overpass bridges[D]. Berkeley, CA, USA:University of California at Berkeley, 2004.
[37] Cornell C A. Risk-based structural design[C]//Proceedings of Symposium on Risk Analysis, Nowak A., Ed., Department of Civil Engineering, University of Michigan, 1994:37-48.
[1] 王东明, 高永武. 城市建筑群概率地震灾害风险评估研究[J]. 工程力学, 2019, 36(7): 165-173.
[2] 李宏男, 成虎, 王东升. 桥梁结构地震易损性研究进展述评[J]. 工程力学, 2018, 35(9): 1-16.
[3] 陈力波, 黄才贵, 谷音. 基于改进响应面法的公路简支梁桥地震易损性分析[J]. 工程力学, 2018, 35(4): 208-218.
[4] 孙晓丹, 曾程, 杨成, 李永恒, 常志旺. 基于有限断层随机地震动合成的高速路网地震危险性分析[J]. 工程力学, 2018, 35(4): 186-199.
[5] 李勇, 闫维明, 刘晶波, 解梦飞. 近断层高架连续梁桥地震易损性与振动台试验研究[J]. 工程力学, 2018, 35(4): 52-60,86.
[6] 王树和, 张举兵. 基于地震损失风险钢筋混凝土框架结构弯矩增大系数评估[J]. 工程力学, 2018, 35(3): 132-140.
[7] 宋帅, 钱永久, 钱聪. 桥梁地震需求中随机参数的重要性分析方法研究[J]. 工程力学, 2018, 35(3): 106-114.
[8] 王丰, 李宏男. 基于简化IDA的结构地震损伤评估方法[J]. 工程力学, 2018, 35(12): 194-202.
[9] 徐善华, 张宗星, 李柔, 位龙虎. 锈蚀钢框架地震易损性评定方法[J]. 工程力学, 2018, 35(12): 107-115.
[10] 周洲, 于晓辉, 吕大刚. 主余震序列作用下钢筋混凝土框架结构的易损性分析及安全评估[J]. 工程力学, 2018, 35(11): 134-145.
[11] 陈力波, 王嘉嘉, 上官萍. 公路斜交梁桥地震易损性模型研究[J]. 工程力学, 2018, 35(1): 160-171,181.
[12] 吕大刚, 代旷宇, 于晓辉, 李宁. FRP加固非延性RC框架结构的地震易损性分析[J]. 工程力学, 2017, 34(增刊): 49-53,70.
[13] 吴迪, 李健军, 谭平, 熊焱, 霍维刚. 串联隔震结构体系的地震易损性分析[J]. 工程力学, 2017, 34(增刊): 227-232.
[14] 黄超, 梁兴文. FRC框架结构地震风险评估的简化方法[J]. 工程力学, 2017, 34(7): 117-125.
[15] 卢杰志, 张耀庭, 郭宗明, 王晓伟. 多层预应力混凝土框架结构基于IDA的地震易损性分析[J]. 工程力学, 2017, 34(6): 109-119.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 于琦;孟少平;吴京;郑开启. 预应力混凝土结构组合式非线性分析模型[J]. 工程力学, 2011, 28(11): 130 -137 .
[2] 徐礼华;徐浩然;杜国锋;温 芳. 组合T形截面钢管混凝土构件抗剪性能试验研究[J]. 工程力学, 2009, 26(12): 142 -149 .
[3] 原海燕;安明喆;贾方方;余自若. 活性粉末混凝土轴拉性能试验研究[J]. 工程力学, 2011, 28(增刊I): 141 -144 .
[4] 邓宗才;李建辉. 混杂FRP加固腐蚀混凝土柱恢复力模型研究[J]. 工程力学, 2011, 28(8): 151 -159 .
[5] 陈 波;瞿伟廉;郑 瑾. 输电塔线体系风振反应的半主动摩擦阻尼控制[J]. 工程力学, 2009, 26(1): 221 -226, .
[6] 张正威;宋二祥;陈肇元;. 核爆冲击波作用下高层建筑倾覆机理分析[J]. 工程力学, 2008, 25(增刊Ⅱ): 177 -203 .
[7] 莫时旭;钟新谷;赵人达. 刚性基底上弹性约束矩形板的屈曲行为分析[J]. 工程力学, 2005, 22(2): 174 -178 .
[8] 谢桂兰;张平;龚曙光;曹尉兰. 增强增韧聚合物基复合材料宏细观应力集中的分析与研究[J]. 工程力学, 2005, 22(3): 228 -234 .
[9] 叶康生;袁驷. 壳体的有限元线法分析(Ⅱ)——数值算例[J]. 工程力学, 2002, 19(5): 16 -23 .
[10] 张顺宝;程文瀼;李爱群. 人工神经网络对结构主动控制中时迟的调整[J]. 工程力学, 2001, 18(2): 140 -144 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日