工程力学 ›› 2019, Vol. 36 ›› Issue (8): 171-181.doi: 10.6052/j.issn.1000-4750.2018.07.0420

• 土木工程学科 • 上一篇    下一篇

危旧预应力混凝土箱梁承载性能足尺试验

王春生1, 王世超1, 王茜1, 沈建成2, 段兰1   

  1. 1. 长安大学桥梁与隧道陕西省重点实验室, 陕西, 西安 710064;
    2. 宁夏路桥集团股份有限公司, 宁夏, 银川 750016
  • 收稿日期:2018-07-27 修回日期:2019-04-01 出版日期:2019-08-25 发布日期:2019-08-10
  • 通讯作者: 王春生(1972-),男,黑龙江人,教授,工学博士,主要从事桥梁评估与加固的研究(E-mail:wcs2000wcs@163.com). E-mail:wcs2000wcs@163.com
  • 作者简介:王世超(1989-),男,内蒙古人,讲师,工学博士,主要从事桥梁加固与养护的研究(E-mail:lhywsc@gmail.com);王茜(1981-),女,陕西人,讲师,工学博士,主要从事桥梁评估与加固的研究(E-mail:brightq@163.com);沈建成(1971-),男,宁夏人,高工,工学学士,主要从事桥梁加固与管养的研究(E-mail:sjc199@sina.com);段兰(1985-),女,陕西人,讲师,工学博士,主要从事桥梁维修加固研究(E-mail:dl0310dl@163.com).
  • 基金资助:
    宁夏交通运输厅科技项目(2015-2);陕西省科技统筹创新工程重点实验室项目(2014SZS19-Z02,2014SZS19-K03);中央高校基本科研业务费专项资金项目(300102218519,300102218204)

EXPERIMENTAL STUDY ON BEARING CAPACITY OF DANGEROUS AND/OR OLD PRE-STRESSED CONCRETE BOX GIRDERS

WANG Chun-sheng1, WANG Shi-chao1, WANG Qian1, SHEN Jian-cheng2, DUAN Lan1   

  1. 1. Key Laboratory for Bridge and Tunnel Engineering of Shaanxi, Chang'an University, Xi'an, Shaanxi 710064, China;
    2. Ningxia Highway & Bridge Corporation, Yinchuan, Ningxia 750016, China
  • Received:2018-07-27 Revised:2019-04-01 Online:2019-08-25 Published:2019-08-10

摘要: 为获得危旧混凝土桥梁的真实承载性能,通过对足尺危旧预应力混凝土小箱梁进行抗弯和抗剪承载性能试验,研究危旧预应力混凝土小箱梁受力退化行为。通过足尺危旧预制箱梁残余承载能力试验,量测分析了试验梁的荷载、挠度、应变、裂缝宽度等,对危旧小箱梁的残余抗弯、抗剪极限承载能力及刚度进行了分析,得出危旧预制箱梁抗弯、抗剪受力性能及破坏机理。将足尺试验结果与承载力计算值以及公路—I级设计内力值进行比较,分析危旧混凝土小箱梁的实际承载性能。引入损伤折减系数,建立危旧混凝土箱梁极限承载力计算公式。试验结果表明:结构损伤降低了箱梁的承载性能,试验梁在未开裂阶段的挠度不满足公路桥规对活载刚度的验算要求,抗弯足尺试验得到的抗弯承载力与抗弯承载力计算结果基本相同,比主梁设计内力弯矩值高70%;抗剪足尺试验结果比主梁设计内力剪力值分别高32%和37%;引入损伤折减系数后的抗弯、抗剪承载力计算公式可以较准确的评估危旧混凝土小箱梁的承载能力,可为我国大量现役混凝土小箱梁的评估与维护提供参考。

关键词: 桥梁工程, 危旧预应力小箱梁, 足尺试验, 抗弯承载性能, 抗剪承载性能

Abstract: In order to obtain the true bearing capacity of dangerous and old pre-stressed concrete box girder bridges, experiments on flexural and shear bearing capacity of full-scale dangerous and old pre-stressed concrete small box girders are conducted to study the mechanical degradation behavior of dangerous and old pre-stressed concrete box girders. Through the residual bearing capacity test of the full-scale prefabricated box girder, the load, deflection, strain and crack width of the test girders are measured and analyzed. The residual bending and shear ultimate capacity and stiffness of the small box girders are analyzed. The bending and shear behavior and failure mechanism of precast box girders in danger are obtained. The comparisons between the results of full-scale test and the calculated value of bearing capacity and also the design value of the internal force of I-Class highway are operated to analyze the actual performance of the small box girder made of dilapidated concrete. The damage reduction coefficient is introduced to establish the formula of ultimate bearing capacity of the girder. The test results stated that the structural damage affected the bearing performance of this box girder. The deflection of the test girder in the uncracked stage did not meet the proof stiffness requirements under the variable load of highway bridge. The calculated results of the flexural bearing capacity are basically identified with the result from full scale flexural test, which is 70% higher than the design bending moment by the internal force of the main girder. The results of full-scale shear tests are respectively 32% and 37% higher than the internal shear design values of the girder. The formulas with damage reduction coefficient for calculating the bending and shearing capacity of the concrete box girders is applicable to evaluate the bearing capacity of the dilapidated concrete girders with more accurate results, which can provide a reference for the evaluation and maintenance of massive existing small concrete box girders in China.

Key words: bridge engineering, dangerous and/or old PC box girders, full-scale test, flexural capacity, shear capacity

中图分类号: 

  • U446.1
[1] Enright M P, Dan M F. Maintenance planning for deteriorating concrete bridges[J]. Journal of Structural Engineering, 1999, 125(12):1407-1414.
[2] Zhang J, Li C, Xu F, et al. Test and analysis for ultimate load-carrying capacity of existing reinforced concrete arch ribs[J]. Journal of Bridge Engineering, 2015, 12(1):4-12.
[3] Douglas B M, Maragakis E A, Nath B. Static deformations of bridges from quick-release dynamic experiments[J]. Journal of Structural Engineering, 1990, 116(8):2201-2213.
[4] 宗周红, 任伟新, 郑振飞. 既有桥梁承载能力评估方法[J]. 地震工程与工程振动, 2005, 25(5):147-152. Zong Zhouhong, Ren Weixin, Zheng Zhenfei. Load-carrying capacity assessment methods of existing bridges[J]. Earthquake Engineering and Engineering Vibration, 2005, 25(5):147-152. (in Chinese)
[5] Maksymowicz M, Cruz P J S, Bien J. Load capacity of damaged RC slab spans of railway-bridges[J]. Archives of Civil & Mechanical Engineering, 2011, 11(4):963-978.
[6] Bagge N, Popescu C, Elfgren L. Failure tests on concrete bridges:Have we learnt the lessons[J]. Structure and Infrastructure Engineering, 2018, 14(3):292-319.
[7] Jorgenson J L, Larson W. Field testing of a reinforced concrete highway bridge to collapse[J]. Transportation Research Record:Journal of the Transportation Research Board, 1976, 607:66-71.
[8] Miller R A, Aktan A E, Shahrooz B M. Destructive testing of decommissioned concrete slab bridge[J]. Journal of Structural Engineering, 1994, 120(7):2176-2198.
[9] Harries K A. Structural testing of prestressed concrete girders from the lake view drive bridge[J]. Journal of Bridge Engineering, 2009, 14(2):78-92.
[10] Lantsoght E, Van Der Veen C, De Boer A, et al. Collapse test and moment capacity of the ruytenschildt reinforced concrete slab bridge[J]. Structure and Infrastructure Engineering, 2017, 13(9):1130-1145.
[11] Bagge N, Nilimaa J, Elfgren L. In-situ methods to determine residual prestress forces in concrete bridges[J]. Engineering Structures, 2017, 135:41-52.
[12] Bagge N, Plos M, Popescu C. A multi-level strategy for successively improved structural analysis of existing concrete bridges:Examination using a prestressed concrete bridge tested to failure[J]. Structure and Infrastructure Engineering, 2019, 15(2):27-53.
[13] Zhang J, Peng H, Cai C. Field study of overload behavior of an existing reinforced concrete bridge under simulated vehicle loads[J]. Journal of Bridge Engineering, 2010, 16(2):226-237.
[14] 张建仁, 彭晖, 张克波, 等. 锈蚀钢筋混凝土旧桥超限及极限荷载作用的现场破坏性试验研究[J]. 工程力学, 2009, 26(增刊Ⅱ):213-224. Zhang Jianren, Peng Hui, Zhang Kebo, et al. Test study on overload and ultimate behavior of old reinforced concrete bridge through destructive test of corroded bridge[J]. Engineering Mechanics, 2009, 26(Suppl 2):213-224. (in Chinese)
[15] Zhang J, Peng H, Cai C. Destructive testing of a decommissioned reinforced concrete bridge[J]. Journal of Bridge Engineering, 2012, 18(6):564-569.
[16] 金浏, 苏晓, 杜修力. 钢筋混凝土梁受弯破坏及尺寸效应的细观模拟分析[J]. 工程力学, 2018, 35(10):27-36. Jin Liu, Su Xiao, Du Xiuli. Meso-scale simulations on flexural failure and size effect of reinforced concrete beams[J]. Engineering Mechanics, 2018, 35(10):27-36. (in Chinese)
[17] 陈悦驰, 吴庆雄, 陈宝春. 装配式空心板桥铰缝破坏模式有限元分析[J]. 工程力学, 2014, 31(增刊1):51-58. Chen Yuechi, Wu Qingxiong, Chen Baochun. Failure mode of hinged joint in assembly voided slab bridge by finite element analysis[J]. Engineering Mechanics, 2014, 31(Suppl 1):51-58. (in Chinese)
[18] 王渠, 吴庆雄, 陈宝春. 装配式空心板桥铰缝破坏模式试验研究[J]. 工程力学, 2014, 31(增刊1):115-120. Wang Qu, Wu Qingxiong, Chen Baochun. Test study on the failure mode of hinged in assembly voided slab bridge[J]. Engineering Mechanics, 2014, 31(Suppl 1):115-120. (in Chinese)
[19] 刘金福. 服役20年预应力混凝土连续梁桥静载试验研究[J]. 桥梁建设, 2013, 43(5):75-80. Liu Jinfu. Study of static load tests for a prestressed concrete continuous girder bridge in service of 20 years[J]. Bridge Construction, 2013, 43(5):75-80. (in Chinese)
[20] 方志, 汪建群, 何鑫,等. 预应力混凝土简支箱梁受力性能足尺模型试验[J]. 中国公路学报, 2011, 24(6):49-56. Fang Zhi, Wang Jianqun, He Xin, et al. Full-scale model test of loading behavior of prestressed concrete simply supported box girder.[J]. China Journal of Highway and Transport, 2011, 24(6):49-56. (in Chinese)
[1] 杨参天, 解琳琳, 李爱群, 陈越. 足尺空腔式RC框架柱抗震性能试验研究[J]. 工程力学, 2019, 36(6): 60-69.
[2] 朱志辉, 张磊, 龚威, 罗思慧, 姚京川, 余志武. 基于模态叠加法和直接刚度法的列车-轨道-桥梁耦合系统高效动力分析混合算法[J]. 工程力学, 2019, 36(4): 196-205.
[3] 岳子翔, 温庆杰, 卓涛. 半开式桁架桥结构稳定性分析[J]. 工程力学, 2018, 35(S1): 270-277.
[4] 钟铭. 既有结构混凝土累积损伤原位评估方法[J]. 工程力学, 2018, 35(S1): 278-286.
[5] 李宏男, 成虎, 王东升. 桥梁结构地震易损性研究进展述评[J]. 工程力学, 2018, 35(9): 1-16.
[6] 张建仁, 肖林发, 彭建新, 唐皇. U型箍加固锈蚀RC梁的抗弯性能试验研究及数值分析[J]. 工程力学, 2018, 35(8): 111-121.
[7] 沙奔, 王浩, 陶天友, 吴宜峰, 李爱群. 考虑混凝土损伤的隔震连续梁桥碰撞响应分析[J]. 工程力学, 2018, 35(3): 193-199.
[8] 宋帅, 钱永久, 钱聪. 桥梁地震需求中随机参数的重要性分析方法研究[J]. 工程力学, 2018, 35(3): 106-114.
[9] 叶新一, 王草, 李全旺. 桥梁结构时变可靠度计算的新方法[J]. 工程力学, 2018, 35(11): 86-91.
[10] 耿少波, 刘亚玲, 薛建英. 钢箱梁缩尺模型爆炸冲击波作用下破坏实验研究[J]. 工程力学, 2017, 34(增刊): 84-88.
[11] 董旭, 邓振全, 李树忱, 谷守法, 张峰. 大跨波形钢腹板箱梁桥日照温度场及温差效应研究[J]. 工程力学, 2017, 34(9): 230-238.
[12] 袁阳光, 黄平明, 韩万水, 李永庆, 赵士良, 刘焕举. 基于可靠度理论的中小跨径桥梁卡车载重限值研究[J]. 工程力学, 2017, 34(8): 161-170.
[13] 赵秋, 蔡文平, 陈宝春. 基于平钢板连接件的钢-RPC组合桥面板抗剪试验研究[J]. 工程力学, 2017, 34(8): 171-179.
[14] 遆子龙, 李永乐, 廖海黎. 地表粗糙度对山区峡谷地形桥址区风场影响研究[J]. 工程力学, 2017, 34(6): 73-81.
[15] 徐昕宇, 李永乐, 廖海黎, 任森. 双层桥面桁架梁三塔悬索桥颤振性能优化风洞试验[J]. 工程力学, 2017, 34(5): 142-147.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日