工程力学 ›› 2019, Vol. 36 ›› Issue (10): 75-85.doi: 10.6052/j.issn.1000-4750.2018.07.0416

• 土木工程学科 • 上一篇    下一篇

酸雨环境下锈蚀RC剪力墙恢复力模型研究

郑山锁, 郑跃, 董立国, 江梦帆, 张晓辉, 可亮   

  1. 西安建筑科技大学土木工程学院, 西安 710055
  • 收稿日期:2018-07-27 修回日期:2018-10-25 出版日期:2019-10-25 发布日期:2019-04-12
  • 通讯作者: 郑跃(1993-),男,河北人,博士生,主要从事结构工程与工程抗震研究(E-mail:zhengyuetime@163.com). E-mail:zhengyuetime@163.com
  • 作者简介:郑山锁(1960-),男,陕西人,教授,博士后,博导,主要从事结构工程与工程抗震研究(E-mail:zhengshansuo@263.net);董立国(1990-),男,山西人,博士生,从事结构工程与工程抗震研究(E-mail:dlg_15@163.com);江梦帆(1994-),女,河北人,硕士生,主要从事结构工程与工程抗震研究(E-mail:jmf602067866@163.com);张晓辉(1989-),男,陕西人,博士生,主要从事工程抗震和结构易损性研究(E-mail:2250232594@qq.com);可亮(1994-),男,湖北人,硕士生,主要从事建筑结构抗震研究(E-mail:619385462@qq.com).
  • 基金资助:
    国家科技支撑计划项目(2013BAJ08B03);国家自然科学基金项目(51678475);陕西省重点研发计划项目(2017ZDXM-SF-093);陕西省教育厅产业化项目(2018JC020)

A RESTORING FORCE MODEL OF RC SHEAR WALLS IN A SIMULATED ACID ENVIRONMENT

ZHENG Shan-suo, ZHENG Yue, DONG Li-guo, JIANG Meng-fan, ZHANG Xiao-hui, KE Liang   

  1. Collage of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, Shanxi 710055, China
  • Received:2018-07-27 Revised:2018-10-25 Online:2019-10-25 Published:2019-04-12

摘要: 出于酸雨环境下锈蚀RC剪力墙结构抗震性能评估的需要,该文提出了酸雨环境下RC剪力墙宏观恢复力模型,通过对6榀锈蚀RC剪力墙拟静力试验结果进行回归分析,得到了考虑轴压比与钢筋锈蚀率影响的锈蚀RC剪力墙骨架曲线特征点荷载与位移修正系数计算公式,以循环退化速率来表征构件强度和刚度的退化,确定了基于循环耗能的循环退化指数βi,并进一步建立了可考虑捏缩效应、屈服强度退化、峰值强度退化、卸载刚度退化及再加载刚度退化的锈蚀RC剪力墙滞回模型。与试验结果对比发现:采用该模拟方法得到的各试件的骨架曲线、滞回曲线以及试件破坏时的累积耗能均与试验结果吻合较好,表明所建立的锈蚀RC剪力墙宏观恢复力模型能较为准确的反应酸雨环境下RC剪力墙结构的力学性能及抗震性能,可为该类结构的抗震性能评估提供理论参考。

关键词: 酸雨环境, RC剪力墙, 锈蚀, 滞回规则, 恢复力模型

Abstract: A macroscopic restoring force model of corroded RC shear walls was proposed to evaluate the seismic performance of corroded RC shear walls under acid rain. The load and displacement correction factor formula of critical points on the corroded RC shear wall skeleton curve was developed. The formula was obtained by applying the regression analysis of test data on six corroded RC shear walls, considering the influence of the axial compression ratio and steel corrosion rate. The degradation of the strength and stiffness of the specimens were characterized by a cyclic degradation index βi based on cycle energy consumption. The corroded RC shear wall hysteresis model was established considering the pinching effect, yield strength degradation, peak strength degradation, unloading stiffness degradation and reloading stiffness degradation. By comparing the simulation results with the experimental data, it can be found that all the skeleton curves, the hysteresis curve and the energy dissipation of the specimens obtained by the proposed method were in good agreement with the experimental data. Consequently, the macroscopic restoring force model for corroded RC shear walls established in this study can accurately reflect the mechanical and seismic performance of corroded RC shear walls, indicating its adaptiveness for estimating the seismic performance of corroded RC shear wall structure under acid rain.

Key words: acid rain environment, RC shear wall, corrosion, hysteretic behavior, restoring force model

中图分类号: 

  • TU375
[1] 张新民, 柴发合, 王淑兰, 等. 中国酸雨研究现状[J]. 环境科学研究, 2010, 23(5):527-532. Zhang Xinmin, Chai Fahe, Wang Shulan, et al. Research progress of acid precipitation in China[J]. Research of Environmental Sciences, 2010, 23(5):527-532. (in Chinese)
[2] 牛荻涛. 混凝土结构耐久性与寿命预测[M]. 北京:科学出版社, 2003:47-50. Niu Ditao. Concrete structure durability and life prediction[M]. Beijing:Science Press, 2003:47-50. (in Chinese)
[3] Guan Y, Zheng S. Seismic behaviors of RC frame beam-column joints under acid rain circle:A pilot experimental study[J]. Journal of Earthquake Engineering, 2017, 21(6):1-19.
[4] 郑山锁, 左河山, 刘巍, 等. 一般大气环境下低剪跨比RC框架梁抗震性能试验研究[J]. 工程力学, 2017, 34(7):186-194. Zheng Shansuo, Zuo Heshan, Liu Wei, et al. Experimental research on aseismic behaviors of RC frame beams of low shear span ration in general atmospheric environment[J]. Engineering Mechanics, 2017, 34(7):186-194. (in Chinese)
[5] 秦卿. 人工气候环境下锈蚀低矮RC剪力墙抗震性能试验研究[D]. 西安:西安建筑科技大学, 2014. Qin Qing. Experimental studies on seismic behavior of corroded squart RC shear walls under artificial climate environment[D]. Xi'an:Xi'an University of Architecture and Technology, 2014. (in Chinese)
[6] 张艳青, 贡金鑫, 韩石. 钢筋混凝土杆件恢复力模型综述(I)[J]. 建筑结构, 2017, (9):65-70. Zhang Yanqing, Gong Jinxin, Han Shi. Reviews of restoring force model for reinforced concrete members (I)[J]. Building Structure, 2017(9):65-70. (in Chinese)
[7] 马凯泽, 梁兴文, 李响, 等. 型钢混凝土剪力墙恢复力模型研究[J]. 工程力学, 2011, 28(8):119-132. Ma Kaize, Liang Xingwen, Li Xiang, et al. Restoring force model of steel reinforced concrete shear walls[J]. Engineering Mechanics, 2011, 28(8):119-132. (in Chinese)
[8] Takeda T, Sozen M A, Neilsen N N. Reinforced concrete response to simulated earthquakes[J]. Journal of the Structural Division, 1970, 96(12):2557-2573.
[9] Ozcebe G, Saatcioglu M. Hysteretic shear model for reinforced concrete members[J]. Journal of Structural Engineering, 1989, 115(1):132-148.
[10] 朱伯龙, 张琨联. 矩形及环形截面压弯构件恢复力特性的研究[J]. 同济大学学报, 1981, 26(2):4-13. Zhu Bolong, Zhang Kunlian. A study of restoring force characteristic of reinforced concrete flexural members with a constant axial load[J]. Journal of Tongji University, 1981, 26(2):4-13. (in Chinese)
[11] Curt B. Haselton, Abbie B, Liel, et al. Calibration of model to simulate response of reinforced concrete beam-columns to collapse[J]. ACI Structural Journal, 2016, 113(6):1141-1152.
[12] 郑山锁, 张艺欣, 黄鹰歌, 等. 酸雨环境下钢筋混凝土框架梁抗震性能试验研究[J]. 建筑结构学报, 2017, 38(9):20-27. Zheng Shansuo, Zhang Yixin, Huang Yingge, et al. Experimental study on seismic behaviors of reinforced concrete frame beams in simulated acid environment[J]. Journal of Building Structures, 2017, 38(9):20-27. (in Chinese)
[13] JGJ 101-1996,建筑抗震试验方法规程[S]. 北京:中国建筑工业出版社, 1996. JGJ 101-1996, Specificating of testing methods for earthquake resistant building[S]. Beijing:China Architecture & Building Press, 1996. (in Chinese)
[14] 姚谦峰, 常鹏. 工程结构抗震分析[M]. 北京:北京交通大学出版社, 2012:180-183. Yao Qianfeng, Chang Peng. Seismic analysis of engineering structure[M]. Beijing:Beijing Jiaotong University Press, 2012:180-183. (in Chinese)
[15] Wallace J W. Modelling issues for tall reinforced concrete core wall buildings[J]. The Structural Design of Tall and Special Buildings, 2007, 16(5):615-632.
[16] Tjhin T N, Aschheim M A, Wallace J W. Yield displacement estimates for displacement-based seismic design of ductile reinforced concrete structural wall buildings[C]//13th World Conference on Earthquake Engineering, Vancouver, 2004:1034-1035.
[17] 张松, 吕西林, 章红梅. 钢筋混凝土剪力墙构件极限位移的计算方法及试验研究[J]. 土木工程学报, 2009, 42(4):10-16. Zhang Song, Lü Xilin, Zhang Hongmei, et al. Experimental and analytical studies on the ultimate displacement of RC shear walls[J]. China Civil Engineering Journal, 2009, 42(4):10-16. (in Chinese)
[18] 梁兴文. 结构抗震性能设计理论与方法[M]. 北京:科学出版社, 2011:220-225. Liang Xingwen. Theory and method of Structural seismic performance design[M]. Beijing:Science Press, 2011:220-225. (in Chinese)
[19] Priestley M J N. Aspect of drift and ductility capacity of rectangular cantilever structural walls[J]. Bulletin of New Zealand Society for Earthquake Engineering, 1998, 31(2):73-85.
[20] 王斌, 郑山锁, 汪锋, 等. 考虑冻融损伤的钢筋混凝土框架节点恢复力模型研究[J]. 工程力学, 2017, 34(5):105-115. Wang Bin, Zheng Shansuo, Wang Feng, et al. Restoring force model of freeze-thaw damaged RC frame joints[J]. Engineering Mechanics, 2017, 34(5):105-115. (in Chinese)
[21] 郑山锁, 李强强, 秦卿, 等. 冻融损伤低矮钢筋混凝土剪力墙恢复力模型研究[J]. 建筑结构学报, 2018, 39(3):111-119. Zheng Shansuo, Li Qiangqiang, Qin Qing, et al. Restoring force model of freezing-thawing damaged squat reinforced concrete shear walls[J]. Journal of Building Structures, 2018, 39(3):111-119. (in Chinese)
[22] 曹琛, 郑山锁, 胡卫兵, 等. 近海大气环境下锈蚀RC框架梁恢复力模型研究[J]. 工程力学, 2019, 36(4):125-134. Cao Chen, Zheng Shansuo, Hu Weibing, et al. A restoring force model of corroded reinforced concrete frame beams in offshore atmospheric environment[J]. Engineering Mechanics, 2019, 36(4):125-134. (in Chinese)
[23] Rahnama M, Krawinkler H. Effects of soft soil and hysteresis model on seismic demands[D]. John A. Blume Earthquake Engineering Center Report No. 108. Department of CEE, Stanford University, 1993.
[24] 李磊, 郑山锁, 王斌, 等. 型钢高强混凝土框架的循环退化效应[J]. 工程力学, 2010, 27(11):81-88. Li Lei, Zheng Shansuo, Wang Bin, et al. Cyclic deterioration effect of the steel reinforced high performance concrete frames[J]. Engineering Mechanics, 2010, 27(11):81-88. (in Chinese)
[1] 隋䶮, 薛建阳, 董金爽, 张锡成, 谢启芳, 白福玉. 附设粘滞阻尼器的混凝土仿古建筑梁-柱节点恢复力模型试验研究[J]. 工程力学, 2019, 36(S1): 44-53.
[2] 邢国华, 杨成雨, 常召群, 秦拥军, 张广泰. 锈蚀钢筋混凝土柱的修正压-剪-弯分析模型研究[J]. 工程力学, 2019, 36(8): 87-95.
[3] 余朔, 金浩, 周顺华, 毕湘利. 氯离子及迷流共同作用下持荷盾构管片钢筋锈层形态[J]. 工程力学, 2019, 36(7): 174-183.
[4] 徐龙河, 孙雨生, 要世乾, 李忠献. 装配式自复位耗能支撑恢复力模型与试验验证[J]. 工程力学, 2019, 36(6): 119-127,146.
[5] 卢啸, 吕泉林. 自复位粘弹性腹杆的力学原理与滞回性能研究[J]. 工程力学, 2019, 36(6): 138-146.
[6] 黄宙, 李宏男, 付兴. 自复位放大位移型SMA阻尼器优化设计方法研究[J]. 工程力学, 2019, 36(6): 202-210.
[7] 曹琛, 郑山锁, 胡卫兵, 赵彦堂, 郑捷, 周炎. 近海大气环境下锈蚀RC框架梁恢复力模型研究[J]. 工程力学, 2019, 36(4): 125-134.
[8] 杨慧, 何浩祥, 闫维明. 锈蚀和疲劳耦合作用下梁桥时变承载力评估[J]. 工程力学, 2019, 36(2): 165-176.
[9] 徐强, 郑山锁, 商校瑀. 近海大气环境作用下钢框架节点时变地震损伤研究[J]. 工程力学, 2019, 36(1): 61-69.
[10] 陈云, 陈超, 蒋欢军, 万志威, 刘涛. O型钢板-高阻尼黏弹性复合型消能器的力学性能试验与分析[J]. 工程力学, 2019, 36(1): 119-128.
[11] 骆欢, 杜轲, 孙景江, 丁宝荣. 小跨高比钢筋混凝土连梁非线性剪切滞回和分析模型研究[J]. 工程力学, 2018, 35(9): 161-169,179.
[12] 张建仁, 肖林发, 彭建新, 唐皇. U型箍加固锈蚀RC梁的抗弯性能试验研究及数值分析[J]. 工程力学, 2018, 35(8): 111-121.
[13] 郑山锁, 张晓辉, 黄威曾, 赵旭冉. 近海大气环境下锈蚀平面钢框架抗震性能试验研究及有限元分析[J]. 工程力学, 2018, 35(7): 62-73,82.
[14] 崔瑶, 李浩, 刘浩, 王晶秋, 唐贞云. 外露式钢柱脚恢复力特性分析[J]. 工程力学, 2018, 35(7): 232-242.
[15] 韩强, 贾振雷, 王晓强, 黄超. 内嵌碟簧型自复位防屈曲支撑性能试验及其恢复力模型研究[J]. 工程力学, 2018, 35(6): 144-150,190.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李宏男;杨浩. 基于多分支BP神经网络的结构系统辨识[J]. 工程力学, 2006, 23(2): 23 -28,4 .
[2] 魏巍;杜静;白绍良. 细长偏心受压钢筋混凝土杆件的强度失效及稳定失效极限承载力分析[J]. 工程力学, 2006, 23(4): 114 -119 .
[3] 丁幼亮;李爱群;缪长青. 基于小波包能量谱的结构损伤预警方法研究[J]. 工程力学, 2006, 23(8): 42 -48 .
[4] 聂利英;李建中;胡世德;范立础. 地震作用下板式橡胶支座滑动引起的城市立交中的动力耦合作用[J]. 工程力学, 2006, 23(11): 14 -20 .
[5] 陈肇元;崔京浩;朱金铨;安明喆;俞哲夫. 钢筋混凝土裂缝机理与控制措施[J]. 工程力学, 2006, 23(S1): 86 -107 .
[6] 鲁成林;张修银;吴艳玲;张东升;. 全瓷冠触压破坏的实验研究[J]. 工程力学, 2009, 26(12): 246 -248, .
[7] 乔 华;陈伟球;. 基于ARLEQUIN方法和XFEM的结构多尺度模拟[J]. 工程力学, 2010, 27(增刊I): 29 -033 .
[8] 张 衡;魏德敏. 考虑温度影响的混凝土微观断裂模型[J]. 工程力学, 2010, 27(10): 14 -020 .
[9] 魏 凯;伍勇吉;徐 灿;庞于涛;袁万城. 桥梁群桩基础-水耦合系统动力特性数值模拟[J]. 工程力学, 2011, 28(增刊I): 195 -200 .
[10] 孙巍巍;孟少平;栾文彬. 大直径混凝土筒仓温度应力研究[J]. 工程力学, 2011, 28(7): 91 -097 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日