工程力学 ›› 2019, Vol. 36 ›› Issue (9): 221-229.doi: 10.6052/j.issn.1000-4750.2018.07.0413

• 其他工程学科 • 上一篇    下一篇

海湾与变水深细长港的耦合振荡研究

郑振钧, 马小舟, 董雨进, 董国海   

  1. 大连理工大学海岸和近海工程国家重点实验室, 辽宁, 大连 116024
  • 收稿日期:2018-07-26 修回日期:2019-06-02 出版日期:2019-09-25 发布日期:2019-06-14
  • 通讯作者: 马小舟(1977-),男,陕西人,副研究员,博士,硕导,从事近岸波浪非线性变形的研究(E-mail:maxzh@dlut.edu.cn). E-mail:maxzh@dlut.edu.cn
  • 作者简介:郑振钧(1994-),男,海南人,硕士生,从事港湾振荡的研究(E-mail:zhengzhenjun1994@163.com);董雨进(1992-),男,辽宁人,硕士生,从事港湾振荡的研究(E-mail:dongyujin103@163.com);董国海(1965-),男,辽宁人,教授,博士,博导,从事海岸及近海工程的研究(E-mail:ghdong@dlut.edu.cn).
  • 基金资助:
    国家重点研发计划项目(2017YFC1404205);中央高校基本科研业务费项目(DUT18ZD214)

RESEARCH ON COUPLED OSCILLATION BETWEEN BAY AND SLENDER HARBOR WITH VARIABLE WATER DEPTH

ZHENG Zhen-jun, MA Xiao-zhou, DONG Yu-jin, DONG Guo-hai   

  1. The State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
  • Received:2018-07-26 Revised:2019-06-02 Online:2019-09-25 Published:2019-06-14

摘要: 采用拓展型缓坡方程有限元模型模拟了变水深细长港和半圆形常水深海湾联结而成的耦合港池的港湾振荡现象。数值模拟结果表明,半圆形海湾的存在改变了入射波况和细长港的辐射阻尼,从而影响了细长港的共振特性。相关性分析表明,当海湾与细长港水体体积之比远大于2.5时,海湾在耦合振荡中占主导地位,联结处和细长港的响应曲线在强度和变化趋势上都有明显的正相关关系。反之,细长港和海湾在耦合振荡中处于平等地位,响应曲线之间只在强度上表现出正相关关系。

关键词: 海岸工程, 港湾振荡, 耦合港池, 辐射阻尼, 拓展型缓坡方程

Abstract: The finite-element model of extended mild-slope equation is used to simulate the oscillation between a semi-circular bay and a slender harbor with variable water depth. A numerical model test shows that incident waves and the radiation damping of the narrow-long harbor are changed due to the bay which influences the resonant features of the harbor. Correlation analysis shows that the bay plays a leading role in the coupled resonance if the ratio of water volume between the bay and the harbor is much higher than 2.5, resulting in a positive correlation between the amplification diagrams of junction and harbor in intensity and trend. Conversely, bay and harbor hold equal status in a coupled oscillation, leading to a positive correlation only in intensity.

Key words: coastal engineering, harbor oscillation, coupled basins, radiation damping, extended mild-slope equation

中图分类号: 

  • O353.2
[1] 王岗, 高俊亮, 王培涛, 等. 港湾共振研究综述[J]. 海洋学报, 2017, 39(11):1-13. Wang Gang, Gao Junliang, Wang Peitao, et al. Review on harbor resonance[J]. Acta Oceanologics Sinica, 2017, 39(11):1-13. (in Chinese)
[2] Wang G, Dong G, Perlin M, et al. An analytic investigation of oscillations within a harbor of constant slope[J]. Ocean Engineering, 2011, 38(2):479-486.
[3] 郑金海, 徐龙辉, 王岗. 斜坡底床港湾内横向与纵向波浪共振的解析解[J]. 工程力学, 2013, 30(5):293-297. Zheng Jinhai, Xu Longhui, Wang Gang. Theoretical analysis of transverse and longitudinal oscillations within a harbor of constant slope[J]. Engineering Mechanics, 2013, 30(5):293-297. (in Chinese)
[4] 王岗, 郑金海, 徐龙辉, 等. 椭圆形港湾内水波共振的解析解[J]. 工程力学, 2014, 31(4):252-256. Wang Gang, Zheng Jinhai, Xu Longhui, et al. An analytical solution for oscillations within an elliptical harbor[J]. Engineering Mechanics, 2014, 31(4):252-256. (in Chinese)
[5] Lee J J, Raichlen F. Wave induced oscillations in harbors of arbitrary shape[R]. California:California Institute of Technology, 1969.
[6] Yu X, Togashi H. Oscillations in a coupled bar-river system. 2. Numerical method[J]. Coastal Engineering, 1996, 28(1-4):165-182.
[7] Kumar, P, Rupali. Modeling of shallow water waves with variable bathymetry in an irregular domain by using hybrid finite element method[J]. Ocean Engineering, 2018, 165:386-398.
[8] Losada I J, Gonzalez-Ondina J M, Diaz-Hernandez G, et al. Numerical modeling of nonlinear resonance of semi-enclosed water bodies:Description and experimental validation[J]. Coastal Engineering, 2008, 55(1):21-4.
[9] 马小舟, 刘嫔, 王岗, 等. 孤立波作用下细长港响应的数值研究[J]. 计算力学学报, 2013, 30(1):101-105. MA Xiaozhou, Liu Pin, Wang Gang, et al. Numerical study on the response of a narrow-long harbor to a solitary wave[J]. Chinese Journal of Computational Mechanics, 2013, 30(1):101-105. (in Chinese)
[10] 史宏达, 徐国栋, 孙龙龙. 矩形港池的港内共振研究[J]. 海岸工程, 2011, 30(2):14-21. Shi Hongda, Xu Guodong, Sun Longlong. Study on resonance in a rectangular harbor basin[J]. Coastal Engineering, 2011, 30(2):14-21. (in Chinese)
[11] 王岗, 马小舟, 马玉祥, 等. 短波对港池长周期振荡的影响[J]. 工程力学, 2010, 27(4):240-245. Wang Gang, Ma Xiaozhou, Ma Yuxiang, et al. Long-period harbor resonance induced by short waves[J]. Engineering Mechanics, 2010, 27(4):240-245. (in Chinese)
[12] 高俊亮, 马小舟, 王岗, 等. 波群诱发的非线性港湾振荡中低频波浪的数值研究[J]. 工程力学, 2013, 30(2):50-57. Gao Junliang, Ma Xiaozhou, Wang Gang, et al. Numerical study on low-frequency waves in nonlinear harbor resonance induced by wave groups[J]. Engineering Mechanics, 2013, 30(2):50-57. (in Chinese)
[13] 高俊亮, 马小舟, 董国海, 等. 港湾振荡下港内低频波浪的数值研究[J]. 工程力学, 2016, 33(7):159-166. Gao Junliang, Ma Xiaozhou, Dong Guohai, et al. Numerical study on low-frequency waves inside the harbor during harbor oscillations[J]. Engineering Mechanics, 2016, 33(7):159-166. (in Chinese)
[14] 马小舟, 马玉祥, 朱小伟, 等. 波浪在潜堤上传播的非线性参数分析[J]. 工程力学, 2016, 33(9):235-241. Ma Xiaozhou, Ma Yuxiang, Zhu Xiaowei, et al. Analysis of wave nonlinear parameters for waves transformation over a submerged bar[J]. Engineering Mechanics, 2016, 33(9):235-241. (in Chinese)
[15] Gao J, Zhou X, Zang J, et al. Influence of offshore fringing reefs on infragravity period oscillations within a harbor[J]. Ocean Engineering, 2018, 158:286-298.
[16] Gao J, Zhou X, Zhou L, et al. Numerical investigation on effects of fringing reefs on low-frequency oscillations within a harbor[J]. Ocean Engineering, 2019, 172:86-95.
[17] Lee J J, Raichlen F. Wave induced oscillations in harbors with two connected basins[R]. California:California Institute of Technology, 1971.
[18] Bellotti G. Transient response of harbours to long waves under resonance conditions[J]. Coastal Engineering, 2007, 54(9):680-693.
[19] Chandrasekera C N, Cheung K F. Extended linear refraction-diffraction model[J]. Journal of Waterway Port Coastal & Ocean Engineering, 1997, 125(3):280-286.
[20] Berkhoff J C W. Computation of combined refractiondiffraction[M]. Holland:Delft Hydraulics Laboratory, 1974.
[21] Mei C C, Stiassnie M, Yue D K P. Theory and applications of ocean surface waves[M]. Singapore:World Scientific Publishing Co. Pte. Ltd., 2005:201-275.
[22] Miles J, Munk W. Harbor paradox[J]. Journal of the Waterway and Harbor Division, 1961, 87(3):111-130.
[1] 王钰, 纪巧玲, 刘庆凯. 规则波作用下导桩锚泊的浮防波堤水动力特性的数值模拟[J]. 工程力学, 2019, 36(S1): 268-271,284.
[2] 王浩霖, 张华昌, 董胜. 直立堤上任意方向入射波的波压力研究[J]. 工程力学, 2018, 35(5): 246-256.
[3] 高俊亮, 马小舟, 董国海, 陈洪洲. 港湾振荡下港内低频波浪的数值研究[J]. 工程力学, 2016, 33(7): 159-166.
[4] 高俊亮,马小舟,王 岗,董国海. 波群诱发的非线性港湾振荡中低频波浪的数值研究[J]. 工程力学, 2013, 30(2): 50-57.
[5] 汪 强;王进廷;金 峰;张楚汉. 结构-地基动力相互作用的实时耦联动力试验[J]. 工程力学, 2011, 28(2): 94-100,.
[6] 王 岗;马小舟;马玉祥;董国海. 短波对港池长周期振荡的影响[J]. 工程力学, 2010, 27(4): 240-245.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 吕大刚;贾明明. 钢框架结构基于变形可靠度的全概率抗震设计[J]. 工程力学, 2011, 28(5): 117 -123 .
[2] 李 航;矫桂琼;赵 龙;王 波. 含切口复合材料加筋板的压缩剩余强度研究[J]. 工程力学, 2011, 28(8): 133 -137, .
[3] 陈 誉;唐菊梅. 平面K型主圆支方钢管节点力学性能数值分析[J]. 工程力学, 2011, 28(8): 219 -225 .
[4] 陈宝春;陈友杰. 钢管混凝土肋拱面内受力全过程试验研究[J]. 工程力学, 2000, 17(2): 44 -50,4 .
[5] 北京发展战略研究所;国际学术会议筹备组. 国际城市经济与规划学术会议征文通知[J]. 工程力学, 1987, 4(1): 50 .
[6] 石永久;王萌;王元清. 基于多尺度模型的钢框架抗震性能分析[J]. 工程力学, 2011, 28(12): 20 -26 .
[7] 余志武, 吴玲玉, 单智. 混凝土确定性及随机性损伤本构模型研究进展[J]. 工程力学, 2017, 34(9): 1 -12 .
[8] 曲哲, 师骁. 汶川地震和鲁甸地震的脉冲型地震动比较研究[J]. 工程力学, 2016, 33(8): 150 -157 .
[9] 柯晓军, 苏益声, 商效瑀, 孙海洋. 钢管混凝土组合柱压弯性能试验及承载力计算[J]. 工程力学, 2018, 35(12): 134 -142 .
[10] 高良田, 王键伟, 王庆, 贾宾, 王永魁, 石莉. 破冰船在层冰中运动的数值模拟方法[J]. 工程力学, 2019, 36(1): 227 -237 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日