工程力学 ›› 2019, Vol. 36 ›› Issue (9): 108-119.doi: 10.6052/j.issn.1000-4750.2018.07.0411

• 土木工程学科 • 上一篇    下一篇

带栓钉波形钢板混凝土组合构件粘结滑移性能与承载力试验研究

王威, 赵春雷, 苏三庆, 任坦, 刘格炜, 董晨阳   

  1. 西安建筑科技大学土木工程学院, 陕西, 西安 710055
  • 收稿日期:2018-07-19 修回日期:2019-05-17 出版日期:2019-09-25 发布日期:2019-05-31
  • 通讯作者: 王威(1972-),男,陕西人,教授,工学博士,从事结构工程研究(E-mail:wangwgh1972@163.com). E-mail:wangwgh1972@163.com
  • 作者简介:赵春雷(1992-),男,河南人,硕士生,从事结构工程研究(E-mail:zhaochunlei2552@163.com);苏三庆(1961-),男,陕西人,教授,硕士,从事结构工程研究(E-mail:sussq@xauat.com);任坦(1994-),男,湖北人,硕士生,从事结构工程研究(E-mail:1322321138@qq.com);刘格炜(1994-),男,陕西人,硕士生,从事结构工程研究(E-mail:573478023@163.com);董晨阳(1994-),男,山西人,硕士生,从事结构工程研究(E-mail:1071260494@qq.com).
  • 基金资助:
    国家自然科学基金项目(51578449,51478383);陕西省自然科学基础研究计划重点项目(2018JZ5013)

EXPERIMENTAL STUDY ON BOND-SLIP BEHAVIOR AND BEARING CAPACITY OF CORRUGATED STEEL PLATE CONCRETE COMPOSITE MEMBER WITH STUD

WANG Wei, ZHAO Chun-lei, SU San-qing, REN Tan, LIU Ge-wei, DONG Chen-yang   

  1. School of Civil Engineering, Xi'an University of Architecture & Technology, Xi'an, Shaanxi 710055, China
  • Received:2018-07-19 Revised:2019-05-17 Online:2019-09-25 Published:2019-05-31

摘要: 通过11个带栓钉的波形钢板混凝土组合构件在单调荷载下的推出试验和1个自然粘结构件的对比试验,研究带栓钉波形钢板混凝土组合构件的破坏形态、裂缝模式、荷载-滑移特性、波形钢板应变分布和承载力等。结果表明:带栓钉波形钢板混凝土组合试件的破坏形态以混凝土劈裂为主。试件的荷载-滑移曲线由上升阶段、下降阶段、残余阶段三个部分组成。由于混凝土和栓钉的组合作用,波形钢板自由端存在受拉区,产生过零点现象。带栓钉波形钢板混凝土组合试件的抗剪承载力随栓钉直径、数量的增长呈线性增长,而在一定条件下,栓钉长度、钢板厚度对抗剪承载力影响不大,另外在200 mm范围内适当增大栓钉间距对抗剪承载力也有提高。基于试验结果和力的扩散原则,分别提出了考虑栓钉影响的波形钢板混凝土界面粘结滑移本构模型以及带栓钉的波形钢板混凝土推出试件的承载力计算公式,所提模型与试验结果吻合良好,承载力公式计算结果与试验结果总体相符且偏于安全。

关键词: 波形钢板混凝土, 栓钉, 粘结滑移本构, 承载力, 组合

Abstract: Eleven corrugated-steel-plate concrete composite members with studs and one comparative corrugated-steel-plate concrete member without studs on the surface of corrugated steel plate were statically tested to study the failure pattern, crack mode, load-slip characteristics, corrugated steel plate strain distribution and bearing capacity of corrugated-steel-plate concrete specimens with studs. The test results exhibit that concrete split failure is the main failure pattern of specimens with studs. The load-slip curves of specimens consists of the rising stage, the descending stage and the residual stage. Due to the action of concrete and studs, the free end of the corrugated steel plate has a tension stress area and a zero-value crossing phenomenon is generated. The shear bearing capacity of corrugated-steel-plate concrete composite specimens increases linearly with the increasing of diameter and quantity of the studs, but it is little affected by the stud length and thickness of corrugated steel plate. In addition, increasing the spacing of the studs within the range of 200 mm can improve the shear bearing capacity. Based on the analysis on experimental results and force spread principles of the specimens, both the constitutive model for the interface bond-slip of corrugated-steel-plate concrete considering the effect of studs and the formula for calculating the bearing capacity are presented. The results from the proposed model is in a good agreement with test results. The results of the bearing capacity formula are not only generally consistent with the test results, but also on the safe side.

Key words: corrugated steel plate concrete, stud, bond-slip constitutive relation, bearing capacity, composite

中图分类号: 

  • TU398
[1] Oh J Y, Lee D H, Kim K S. Accordion effect of prestressed steel beams with corrugated webs[J]. Thin-Walled Structures, 2012, 57(4):49-61.
[2] Shahmohammadi A, Mirghaderi R, Hajsadeghi M, et al. Application of corrugated plates as the web of steel coupling beams[J]. Journal of Constructional Steel Research, 2013, 85(2):178-190.
[3] 王威, 高敬宇, 苏三庆, 等. 波形钢板剪力墙抗侧性能的有限元分析[J]. 西安建筑科技大学学报(自然科学版), 2017, 49(5):630-636. Wang Wei, Gao Jingyu, Su Sanqing, et al. Lateral resisting behavior finite element analysis of corrugated steel plate shear wall[J]. Xi'an University of Architecture and Technology (Natural Science Edition), 2017, 49(5):630-636. (in Chinese)
[4] 王威, 张龙旭, 苏三庆, 等. 波形钢板剪力墙抗震性能试验研究[J]. 建筑结构学报, 2018, 39(5):36-44. Wang Wei, Zhang Longxu, Su Sanqing, et al. Experimental research on seismic behavior of corrugated steel plate shear wall[J]. Journal of Building Structures, 2018, 39(5):36-44. (in Chinese)
[5] Wang W, Wang Y, Lu Z. Experimental study on seismic behavior of steel plate reinforced concrete composite shear wall[J]. Engineering Structure, 2018, 160(4):281-292.
[6] 韦芳芳, 郑泽军, 喻君, 等. 基于钢板屈曲分析的双钢板-混凝土组合剪力墙轴压承载力计算方法[J]. 工程力学, 2019, 36(2):154-164. Wei Fangfang, Zheng Zejun, Yu Jun, et al. Computational method for axial compression capacity of double steel-concrete composite shear walls with consideration of buckling[J]. Engineering Mechanics, 2019, 36(2):154-164. (in Chinese)
[7] 朱爱萍, 肖从真, 陈涛, 等. 剪跨比为1的内置钢板-混凝土组合剪力墙抗震性能试验研究[J]. 土木工程学报, 2016, 49(10):49-56, 79. Zhu Aiping, Xiao Congzhen, Chen Tao, et al. Experimental study on seismic behavior of embedded steel plate reinforced concrete shear walls with 1.0 shear-span-ratio[J]. China Civil Engineering Journal, 2016, 49(10):49-56, 79. (in Chinese)
[8] 聂建国, 卜凡民, 樊健生. 高轴压比、低剪跨比双钢板-混凝土组合剪力墙拟静力试验研究[J]. 工程力学, 2013, 30(6):60-66, 76. Nie Jianguo, Bu Fanmin, Fan Jiansheng. Quasi-static test on low shear-span ratio composite shear wall with double steel plate and infill concrete under high axial compression ratio[J]. Engineering Mechanics, 2013, 30(6):60-66, 76. (in Chinese)
[9] 纪晓东, 贾翔夫, 钱稼茹. 钢板混凝土剪力墙抗剪性能试验研究[J]. 建筑结构学报, 2015, 36(11):46-55.. Ji Xiaodong, Jia Xiangfu, Qian Jiaru. Experimental study on shear behavior of steel-plate composite shear walls[J]. Journal of Building Structures, 2015, 36(11):46-55. (in Chinese)
[10] 范重, 王金金, 王义华, 等. 钢板混凝土组合剪力墙拉弯性能研究[J]. 建筑结构学报, 2016, 37(7):1-9. Fan Zhong, Wang Jinjin, Wang Yihua, et al. Research on tension-bending performance of steel plate concrete composite shear walls[J]. Journal of Building Structures, 2016, 37(7):1-9. (in Chinese)
[11] 詹建敏, 吴炎海. 压型钢板-混凝土组合楼板剪切粘结承载力试验研究[J]. 福建建筑, 2002, 13(3):27-30. Zhan Jianmin, Wu Yanhai. A test research on the horizontal shear-bond capacity of composite slabs[J]. Fujian Architecture, 2002, 13(3):27-30. (in Chinese)
[12] 白力更, 赵辉, 史庆轩. 压型钢板-混凝土组合楼板剪切-粘结试验研究[J]. 钢结构, 2005, 20(3):30-34. Bai Ligeng, Zhao Hui, Shi Qingxuan. Shear-bond experimental study of cold-formed steel deck and concrete composite floors[J]. Steel Construction, 2005, 20(3):30-34. (in Chinese)
[13] 郝家欢. 压型钢板-混凝土组合楼板剪切粘结滑移性能试验研究[D]. 陕西:西安建筑科技大学, 2007. Hao Jiahuan. Experimental study on shear bond-slip behavior of profiled sheeting concrete composite slabs[D]. Shaanxi:Xi'an University of Architecture & Technology, 2007. (in Chinese)
[14] 史晓宇. 组合楼板纵向抗剪承载力的简化计算方法[J]. 建筑结构, 2016, 46(7):74-81. Shi Xiaoyu. Simplified calculation method for longitudinal shear capacity of composite slabs[J]. Building Structure, 2016, 46(7):74-81. (in Chinese)
[15] 管宇, 周绪红, 卫世杰, 等. 冷弯薄壁型钢组合楼盖振动性能及静力挠度研究[J]. 工程力学, 2018, 35(5):131-142. Guan Yu, Zhou Xuhong, Wei Shijie, et al. Study on vibration performance and static deflection of cold-formed thin-walled steel composite floors[J]. Engineering Mechanics, 2018, 35(5):131-142. (in Chinese)
[16] 李俊华, 邱栋梁, 俞凯, 等. 高温后型钢混凝土粘结滑移性能研究[J]. 工程力学, 2015, 32(2):190-200, 206. Li Junhua, Qiu Dongliang, Yu Kai, et al. Study on bond-slip behavior between shaped steel and concrete in SRC structures after exposed to high temperature[J]. Engineering Mechanics, 2015, 32(2):190-200, 206. (in Chinese)
[17] Liu C, Lü Z Y, Bai G L, et al. Experiment study on bond slip behavior between section steel and RAC in SRRC structures[J]. Construction and Building Materials, 2018, 175:104-114.
[18] 郑山锁, 李磊, 邓国专, 等.型钢高强高性能混凝土梁粘结滑移行为研究[J]. 工程力学, 2009, 26(1):104-112. Zheng Shansuo, Li Lei, Deng Guozhuan, et al. Experimental study on bond-slip behavior between shaped steel and HSHP concrete in steel reinforced HSHP concrete beams[J]. Engineering Mechanics, 2009, 26(1):104-112. (in Chinese)
[19] 李辉. 劲性钢骨高强混凝土结构粘结性能和梁柱中节点抗剪性能的试验研究[D]. 上海:同济大学, 1998. Li Hui. Experimental research on bond behavior and on shear of inner beam column joints[D]. Shanghai:Tongji University, 1998. (in Chinese)
[20] 孙国良, 王英杰. 劲性砼柱端部轴力传递性能的试验研究与计算[J]. 建筑结构学报, 1989, 10(6):40-49. Sun Guoliang, Wang Yingjie. Experimental study and calculation of axial load transmission in the top section of encased columns[J]. Journal of Building structures, 1989, 10(6):40-49. (in Chinese)
[21] 赖虹. 型钢高强混凝土框架柱栓钉合理布置方式的研究[D]. 重庆:重庆大学, 2011:93. Lai Hong. Study on reasonable posting manner of studs on steel reinforced high-strength concrete frame columns[D]. Chongqing:Chongqing University, 2011:93. (in Chinese)
[22] 张文江, 曹万林, 董宏英, 等. 带栓钉钢板与外包混凝土剪力墙共同工作性能研究[J]. 北京工业大学学报, 2012, 38(6):828-834. Zhang Wenjiang, Cao Wanlin, Dong Hongying, et al. Performance of co-work between steel plate with studs and outer reinforced concrete in shear wall[J]. Journal of Beijing University of Technology, 2012, 38(6):828-834. (in Chinese)
[23] JGJ 138-2016, 组合结构设计规范[S]. 北京:中国建筑工业出版社, 2016. JGJ 138-2016, Code for design of composite structures[S]. Beijing:China Architecture & Building Press, 2016. (in Chinese)
[24] CECS 290-2011, 波浪腹板钢结构应用技术规程[S]. 北京:中国计划出版社, 2011. CECS 290-2011, Technical specification for application of sinusoidal web steel structures[S]. Beijing:China Planning Press, 2011. (in Chinese)
[25] CECS 291-2011, 波纹腹板钢结构技术规程[S]. 北京:中国计划出版社, 2011. CECS 291-2011, Technical specification for steel structures with corrugated webs[S]. Beijing:China planning press, 2011. (in Chinese)
[26] CSC226.2007, 栓钉焊接技术规程[S]. 北京:中国计划出版社, 2007. CSC226.2007, Technical specification for welding of stud[S]. Beijing:China Planning Press, 2007. (in Chinese)
[27] GB/T 10433-2002, 电弧螺柱焊用圆柱头焊钉[S]. 北京:中国标准出版社, 2002. GB/T 10433-2002, Chinese head studs for are stud welding[S]. Beijing:Standards Press of China, 2002. (in Chinese)
[28] 薛建阳, 赵鸿铁. 型钢混凝土粘结滑移理论及其工程应用[M]. 北京:科学出版社, 2007. Xue Jianyang, Zhao Hongtie. The theory and its engineering application of bond-slip between steel shape and concrete in SRC structures[M]. Beijing:Science Press, 2007. (in Chinese)
[29] GB/T 228.1-2010, 金属材料拉伸试验第一部分:室温试验方法[S]. 北京:中国标准出版社, 2010. GB/T 228.1-2010, Metallic materials-tensile testingPart 1:Method of test at room temperature[S]. Beijing:Standards Press of China, 2010. (in Chinese)
[30] 杨勇. 型钢混凝土粘结滑移基本理论及应用研究[D]. 西安:西安建筑科技大学, 2003. Yang Yong. Study of the basic theory and its application of bond-slip between steel shape and concrete in SRC structures[D]. Xi'an:Xi'an University of Architecture & Technology, 2003. (in Chinese)
[31] GB 50017-2017, 钢结构设计标准[S]. 北京:中国计划出版社, 2017. GB50017-2017, Standard for design of steel structures[S]. Beijing:China Planning Press, 2017. (in Chinese)
[1] 蒋友宝, 尹倩倩, 罗军, 付涛. 基于承载力拟合的钢拱不利几何缺陷分析[J]. 工程力学, 2019, 36(S1): 203-209.
[2] 庞瑞, 张艺博, 张天鹏, 李倩倩, 梁书亭. 分布式连接全装配RC楼盖横板向弯曲刚度计算方法研究[J]. 工程力学, 2019, 36(S1): 37-43,58.
[3] 林德慧, 陈以一. 部分填充钢-混凝土组合柱整体稳定分析[J]. 工程力学, 2019, 36(S1): 71-77,85.
[4] 张天龙, 丁阳, 李忠献. 基于损伤的单层球面网壳结构地震剩余承载力评估与优化分析[J]. 工程力学, 2019, 36(S1): 131-137.
[5] 杨浩, 罗帅, 邢国然, 王伟. 杆梁组合结构的有限元分析[J]. 工程力学, 2019, 36(S1): 154-157,169.
[6] 关少钰, 白涌滔, 刘卫辉, 李银胜, 王伟. 基于统一强度理论的高强钢管混凝土柱压弯屈服准则[J]. 工程力学, 2019, 36(S1): 170-174,183.
[7] 程麦理. 黄土场地桩基横向力学行为数值模拟[J]. 工程力学, 2019, 36(S1): 229-233.
[8] 李佳龙, 李钢, 李宏男. 基于隔离非线性的实体单元模型与计算效率分析[J]. 工程力学, 2019, 36(9): 40-49,59.
[9] 梁兴文, 汪萍, 徐明雪, 于婧, 李林. 免拆UHPC模板RC梁受弯性能试验及承载力分析[J]. 工程力学, 2019, 36(9): 95-107.
[10] 田稳苓, 温晓东, 彭佳斌, 徐丽丽, 李子祥. 新型泡沫混凝土轻钢龙骨复合墙体抗剪承载力计算方法研究[J]. 工程力学, 2019, 36(9): 143-153.
[11] 徐明雪, 梁兴文, 汪萍, 王照耀. 超高性能混凝土梁正截面受弯承载力理论研究[J]. 工程力学, 2019, 36(8): 70-78.
[12] 武海鹏, 曹万林, 董宏英. 基于“统一理论”的异形截面多腔钢管混凝土柱轴压承载力计算[J]. 工程力学, 2019, 36(8): 114-121.
[13] 杨勇, 孙东德, 张超瑞, 薛亦聪, 陈阳, 于云龙. 钢管高强混凝土叠合构件受剪承载能力试验研究[J]. 工程力学, 2019, 36(8): 182-191.
[14] 侯立群, 闫维明, 陈适才, 陆新征. 内置角钢改进夹心节点抗震性能研究与抗剪承载力计算[J]. 工程力学, 2019, 36(7): 79-88.
[15] 梁兴文, 王莹, 于婧, 李林. 预制UHPC模板及采用预制模板的RC板受力性能及承载力分析[J]. 工程力学, 2019, 36(7): 146-155.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张伯艳;陈厚群. LDDA动接触力的迭代算法[J]. 工程力学, 2007, 24(6): 0 -006 .
[2] 陈有亮;邵伟;周有成. 水饱和混凝土单轴压缩弹塑性损伤本构模型[J]. 工程力学, 2011, 28(11): 59 -063, .
[3] 吴方伯;黄海林;陈伟;周绪红;. 肋上开孔对预制预应力混凝土带肋薄板施工阶段挠度计算方法的影响研究[J]. 工程力学, 2011, 28(11): 64 -071 .
[4] 李宗利;杜守来. 高渗透孔隙水压对混凝土力学性能的影响试验研究[J]. 工程力学, 2011, 28(11): 72 -077 .
[5] 王坤;谢康和;李传勋;童磊. 特殊条件下考虑起始比降的双层地基一维固结解析解[J]. 工程力学, 2011, 28(11): 78 -082 .
[6] 姜亚洲;任青文;吴晶;杜小凯. 基于双重非线性的混凝土坝极限承载力研究[J]. 工程力学, 2011, 28(11): 83 -088 .
[7] 吴明;彭建兵;徐平;孙苗苗;夏唐代. 考虑土拱效应的挡墙后土压力研究[J]. 工程力学, 2011, 28(11): 89 -095 .
[8] 陆本燕;刘伯权;邢国华;吴涛. 桥梁结构基于性能的抗震设防目标与性能指标研究[J]. 工程力学, 2011, 28(11): 96 -103, .
[9] 左志亮;蔡健;钟国坤;杨春;. 带约束拉杆T形截面钢管内核心混凝土的等效单轴本构关系[J]. 工程力学, 2011, 28(11): 104 -113 .
[10] 田力;高芳华. 地下隧道内爆炸冲击下地表多层建筑的动力响应研究[J]. 工程力学, 2011, 28(11): 114 -123 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日