工程力学 ›› 2019, Vol. 36 ›› Issue (8): 149-160.doi: 10.6052/j.issn.1000-4750.2018.07.0410

• 土木工程学科 • 上一篇    下一篇

带LYP160钢连接组件的扩翼型盖板连接节点抗震行为研究

王萌, 柯小刚   

  1. 北京交通大学土木建筑工程学院, 北京 100044
  • 收稿日期:2018-07-19 修回日期:2018-10-31 出版日期:2019-08-25 发布日期:2019-08-10
  • 通讯作者: 王萌(1985-),女,黑龙江哈尔滨市人,副教授,博士,从事钢结构抗震研究(E-mail:wangmeng1117@gmail.com). E-mail:wangmeng1117@gmail.com
  • 作者简介:柯小刚(1994-),男,湖北省鄂州市人,硕士生,从事钢结构抗震研究(E-mail:16121044@bjtu.edu.cn).
  • 基金资助:
    国家自然科学基金项目(51778042);北京市自然科学基金项目(8182042)

SEISMIC BEHAVIOR OF WIDENED FLANGE CONNECTIONS WITH LYP160 STEEL COMPONENTS

WANG Meng, KE Xiao-gang   

  1. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
  • Received:2018-07-19 Revised:2018-10-31 Online:2019-08-25 Published:2019-08-10

摘要: 为在新型城镇化进程中推广使用带有震后可更换构件的结构体系,对钢框架体系中带低屈服点LYP160钢材盖板连接组件的节点进行梁柱连接部位扩大梁翼缘截面的改进,提高节点承载能力及“保险丝”作用效果。采用通用有限元软件ABAQUS建立全螺栓连接节点数值模型,结合国内外典型试验结果,验证数值模型的准确性和适用性。通过建立不同扩翼程度、不同削弱程度的盖板连接节点模型,对比其承载性能、滞回性能、断裂性能以及耗能能力等,深入探讨不同扩翼程度对不同削弱程度的扩翼型盖板连接节点抗震行为的影响,并给出此类节点的设计流程,为工程应用提供参考依据。研究结果表明:扩大梁端翼缘截面可增加盖板连接组件耗能,减少主体结构进入塑性程度及耗能比例,有效转移塑性铰位置,提高节点“保险丝”作用效果及作用时间;随着扩翼程度的增大,节点所需的承载力系数设计值提高,使节点避免过度削弱,兼顾正常使用承载能力及可更换“保险丝”作用,但当扩翼达到一定程度后,对盖板连接组件耗能比例的提高作用有限;基于计算结果拟合得到节点承载力系数限值与扩翼系数的关系曲线,为保证“保险丝”作用充分发挥,应保证承载力系数设计值小于承载力系数限值,扩翼型节点的承载力系数限值比未扩翼型节点提高22%,实现对节点进行较小削弱就能充分发挥“保险丝”作用效果的目标。

关键词: 低屈服点钢材(LYP), 盖板连接组件, 钢框架节点, 保险丝, 扩翼

Abstract: To promote structural systems with replaceable components in the new urbanization process, connections with LYP160 steel cover-plate components in steel frame systems were improved by widening the beam flange section to increase the bearing capacity and fuse performance. A numerical model of full-bolted connections was established by using ABAQUS and was proven correct and applicable due to test results at home and abroad. Subsequently, cover-plate connection models with different degrees of widening and weakening of the flange were established. The load-carrying capacity, hysteretic behavior, fracture performance and energy dissipation capacity were compared, and the influence of the degree of widening on the seismic behavior of widened flange cover-plate connections with different degrees of weakening was discussed in depth. Finally, a design procedure was proposed to provide a basis for engineering application. The analysis results showed that widening the beam flange section can reduce the energy dissipation of the main frame and increase that of the cover-plate components. Widening the flange can also effectively transfer the position of the plastic hinge, and improve the effect and time of fuses. With the increase in the widening, the required design value of the bearing capacity was improved, which avoided excessive weakening and guaranteed the bearing capacity for normal use and the replaceable function of fuses. When the degree of widening reached a certain value, the influence of widening on the increase in the energy dissipation of cover-plate components was limited. Based on the calculation results, a relation curve of the limit value of bearing capacity coefficient and the widened flange coefficient was obtained. To ensure the full play of fuse, the design value of the bearing capacity coefficient should be less than the limit value, and the limit of the bearing capacity coefficient of the widened flange connection was 22% higher than that of the unwidened flange connection, indicating that the fuse effect will adequately exert with a smaller weakened degree of connection.

Key words: low yield point steel (LYP), cover-plate component, steel frame connection, fuse, widened flange

中图分类号: 

  • TU391
[1] 曹杨, 陈沸镔, 龙也. 装配式钢结构建筑的深化设计探讨[J]. 钢结构, 2016, 31(2):72-76. Cao Yang, Chen Feibin, Long Ye. Discussion on the detailed design of fabricated steel structure building[J]. Steel Construction, 2016, 31(2):72-76. (in Chinese)
[2] 沈祖炎, 罗金辉, 李元齐. 以钢结构建筑为抓手推动建筑行业绿色化、工业化、信息化协调发展[J]. 建筑钢结构进展, 2016, 18(2):1-6. Shen Zuyan, Luo Jinhui, Li Yuanqi. Discussion on coordinated development of greenization, industrialization and informatization with steel buildings as objects in construction industry[J]. Progress in Steel Building Structures, 2016, 18(2):1-6. (in Chinese)
[3] 张爱林. 工业化装配式高层钢结构体系创新、标准规范编制及产业化关键问题[J]. 工业建筑, 2014, 44(8):1-6. Zhang Ailin. The key issues of system innovation, drawing up standard and Industrialization for modularized prefabricated high-rise steel structures[J]. Industrial Construction, 2014, 44(8):1-6. (in Chinese)
[4] 郝际平, 孙晓岭, 薛强, 等. 绿色装配式钢结构建筑体系研究与应用[J]. 工程力学, 2017, 34(1):1-13. Hao Jiping, Sun Xiaoling, Xue Qiang, et al. Research and applications of prefabricated steel structure building systems[J]. Engineering Mechanics, 2017, 34(1):1-13. (in Chinese)
[5] 叶之皓. 我国装配式钢结构住宅现状及对策研究[D]. 南昌:南昌大学, 2012. Ye Zhihao. Study on present situation and countermeasure of the domestic prefabricated steel structure[D]. Nanchang:Nanchang University, 2012. (in Chinese)
[6] Dao T N, Lindt J W V D. Seismic performance of an innovative light-gauge cold-formed steel mid-rise building[C]. Chicago, Illinois, United States:Structures Congress 2012:1496-1506.
[7] Serrette R. Seismic design strength of cold-formed steel framed shear walls[J]. Journal of Structural Engineering, 2010, 136(9):1123-1130.
[8] 侯和涛, 吕忠珑, 周健, 等. 预制装配式钢框架结构体系的设计及经济性分析[J]. 钢结构, 2014, 29(1):20-24. Hou Hetao, Lv Zhonglong, Zhou Jian, at el. Design and economic analysis of PK assembled steel frame structure system[J]. Steel Construction, 2014, 29(1):20-24. (in Chinese)
[9] 吕西林, 陈云, 毛苑君. 结构抗震设计的新概念——可恢复功能结构[J]. 同济大学学报(自然科学版), 2011, 39(7):941-948. Lu Xilin, Chen Yun, Mao Yuanjun. New concept of structural seismic design:earthquake resilient structures[J]. Journal of Tongji University (Natural Science), 2011, 39(7):941-948. (in Chinese)
[10] 陈以一, 贺修樟, 柯珂, 等. 可更换损伤元结构的特征与关键技术[J]. 建筑结构学报, 2016, 37(2):1-10. Chen Yiyi, He Xiuzhang, Ke Ke, at el. Characteristics and technical issues on structural systems with replaceable damage-concentrated elements[J]. Journal of Building Structures, 2016, 37(2):1-10. (in Chinese)
[11] 吕西林, 陈聪. 带有可更换构件的结构体系研究进展[J]. 地震工程与工程振动, 2014, 34(1):27-36. Lu Xilin, Chen Cong. Research progress in structural systems with replaceable members[J]. Earthquake engineering and engineering dynamics, 2014, 34(1):27-36. (in Chinese)
[12] 王萌, 毕鹏, 吴照章. 带低屈服点钢材"延性保险丝" 的钢框架连接节点受力行为研究[J]. 建筑结构学报, 2019, 40(11):131-142. Wang Meng, Bi Peng, Wu Zhaozhang. Study on behavior of steel frame connection with low yield point steel ‘ductile fuse’[J]. Journal of Building Structures, 2019, 40(11):131-142. (in Chinese)
[13] 王萌, 钱凤霞, 杨维国, 等. 低屈服点钢材与Q345B和Q460D钢材本构关系对比研究[J].工程力学, 2017, 34(2):60-68. Wang Meng, Qian Fengxia, Yang Weiguo, at el. Comparison study on constitutive relationship of low yield point steels, Q345B steel and Q460D steel[J]. Engineering Mechanics, 2017, 34(2):60-68. (in Chinese)
[14] 王萌, 钱凤霞, 杨维国. 低屈服点LYP160钢材本构关系研究[J]. 建筑结构学报, 2017, 38(2):55-62. Wang Meng, Qian Fengxia, Yang Weiguo. Constitutive behavior of low yield point steel LYP160[J]. Journal of Building Structures, 2017, 38(2):55-62. (in Chinese)
[15] 张爱林, 郭志鹏, 刘学春, 等. 带Z字形悬臂梁段拼接的装配式钢框架节点抗震性能试验研究[J]. 工程力学, 2017, 34(8):31-41. Zhang Ailin, Guo Zhipeng, Liu Xuechun, at el. Experimental study on aseismic behavior of prefabricated steel-frame-joints with Z-shaped cantilever-beam splicing[J]. Engineering Mechanics, 2017, 34(8):31-41. (in Chinese)
[16] Oh K, So J, Ha H, at el. Seismic performance evaluation of Korean column-tree steel moment connections[J]. International Journal of Steel Structures, 2016, 16(4):1287-1298.
[17] 中国建筑标准设计研究院. 多、高层民用建筑钢结构节点构造详图:16G519[M]. 北京:中国计划出版社, 2016. China Institute of Building Standard Design & Research. Structural details of multiple and high-rise civil construction steel structures connections:16G519[M]. Beijing:China Planning Press, 2016. (in Chinese)
[18] 高鹏. 钢框架梁端翼侧板加强式和扩翼式节点受力性能的试验研究[D]. 青岛:青岛理工大学, 2009. Gao Peng. Exprimental evaluation on the behaviors of side-plate reinforced section and widen flange section of steel frame[D]. Qingdao:Qingdao Technological University, 2009. (in Chinese)
[19] Federal Emergency Management Agency (FEMA). Recommended seismic design criteria for new steel moment-frame buildings:FEMA-350[S]. Washington D.C., SAC Joint Venture for FEMA, 2000.
[20] GB 50011-2010, 建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50011-2010, Code for Seismic Design of Buildings[S]. Beijing:China Architecture & Building Press, 2010. (in Chinese)
[21] GB 50017-2003, 钢结构设计标准[S]. 北京:中国建筑工业出版社, 2003. GB 50017-2003, Code for Design of Steel Structures[S]. Beijing:China Architecture & Building Press, 2003. (in Chinese)
[22] JGJ 82-2011, 钢结构高强度螺栓连接技术规程[S]. 北京:中国建筑工业出版社, 2011. JGJ 82-2011, Technical specification for high strength bolt connections of steel structures[S]. Beijing:China Architecture & Building Press, 2011. (in Chinese)
[23] 石永久, 王萌, 王元清, 等. 钢框架端板连接半刚性节点受力性能分析[J]. 工程力学, 2011, 28(9):51-58. Shi Yongjiu, Wang Meng, Wang Yuanqing, at el. Analysis on the behavior of steel frame end-plate connections[J]. Engineering Mechanics, 2011, 28(9):51-58. (in Chinese)
[24] Chaboche J L. Time independent constitutive theories for cyclic plasticity[J]. International Journal of Plasticity, 1986, 2(2):149-188.
[25] 石永久, 王萌, 王元清. 循环荷载作用下结构钢材本构关系试验研究[J]. 建筑材料学报, 2012, 15(3):293-300. Shi Yongjiu, Wang Meng, Wang Yuanqing. Experimental study of structural steel constitutive relationship under cyclic loading[J]. Journal of Building Material, 2012, 15(3):293-300. (in Chinese)
[26] Ricles J M, Fisher J W, Lu L W, et al. Development of improved welded moment connections for earthquake-resistant design[J]. Journal of Constructional Steel Research, 2002, 58(5):565-604.
[1] 徐强, 郑山锁, 商校瑀. 近海大气环境作用下钢框架节点时变地震损伤研究[J]. 工程力学, 2019, 36(1): 61-69.
[2] 丁杰, 邹昀, 蔡鑫, 李天祺, 郑黎君, 赵桃干. 损伤可控型钢框架边节点的试验研究[J]. 工程力学, 2018, 35(S1): 107-112.
[3] 王萌, 柯小刚, 吴照章. 可更换延性耗能连接组件的钢框架节点抗震性能研究[J]. 工程力学, 2018, 35(12): 151-163.
[4] 胡阳阳, 林旭川, 吴开来, 王涛. 带“保险丝”连接板的焊接高强钢梁柱节点抗震性能试验研究[J]. 工程力学, 2017, 34(增刊): 143-148.
[5] 王克海, 李冲, 李茜, 李悦. 考虑支座摩擦滑移的中小跨径桥梁抗震设计方法[J]. 工程力学, 2014, 31(6): 85-92.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日