工程力学 ›› 2019, Vol. 36 ›› Issue (8): 133-140.doi: 10.6052/j.issn.1000-4750.2018.07.0403

• 土木工程学科 • 上一篇    下一篇

楼梯间外纵墙一字形墙肢的稳定性问题及处理

蔚博琛1,2, 张敬书1,2, 于晓旭2,3, 柳涛2,4   

  1. 1. 兰州大学西部灾害与环境力学教育部重点实验室, 兰州 730000;
    2. 兰州大学土木工程与力学学院, 兰州 730000;
    3. 中国建筑东北设计研究院有限公司, 沈阳 110000;
    4. 山东省建筑设计研究院有限公司, 济南 250000
  • 收稿日期:2018-07-17 修回日期:2018-09-22 出版日期:2019-08-25 发布日期:2019-08-10
  • 通讯作者: 张敬书(1966-),男,甘肃人,教授,博士,主要从事高层建筑抗震研究(E-mail:jshzhang@lzu.edu.cn). E-mail:jshzhang@lzu.edu.cn
  • 作者简介:蔚博琛(1994-),男,陕西人,硕士生,主要从事高层建筑抗震研究(E-mail:weibch2016@lzu.edu.cn);于晓旭(1991-),男,辽宁人,硕士生,主要从事高层建筑抗震研究(E-mail:yuxx15@lzu.edu.cn);柳涛(1991-),男,山东人,硕士生,主要从事高层建筑抗震研究(E-mail:liut15@lzu.edu.cn).
  • 基金资助:
    国家自然科学基金项目(51678283)

STABILITY ANALYSIS AND STRENGTHENING OF RECTANGULAR LONGITUDINAL EXTERIOR WALL IN STAIRCASES

WEI Bo-chen1,2, ZHANG Jing-shu1,2, YU Xiao-xu2,3, LIU Tao2,4   

  1. 1. Key Laboratory of Mechanics on Disaster and Environment in Western China of the Ministry of Education, Lanzhou University, Lanzhou 730000, China;
    2. School of Civil Engineering and Mechanics, Lanzhou University, Lanzhou 730000, China;
    3. China Northeast Architectural Design & Research Institute Co., Ltd, Shenyang 110000, China;
    4. Shandong Provincial Architectural Design & Research Institute Co., Ltd, Jinan 250000, China
  • Received:2018-07-17 Revised:2018-09-22 Online:2019-08-25 Published:2019-08-10

摘要: 高层建筑中,部分剪力墙楼梯间外纵墙两侧仅通过连梁与其它墙肢相连,由于剪力墙先于楼梯施工,该墙肢为无支高度较高的一字形墙肢,存在平面外失稳的可能,从而使结构设计偏于不安全。该文首先根据能量法基本原理,考虑施工完成前和完成后两种工况,建立了一字形墙肢考虑自重时平面外失稳的计算方法,并采用有限元数值模拟验证了该方法的正确性。然后以某高层剪力墙结构为例进行验算,指出楼梯间外纵墙一字形墙肢存在失稳的可能。最后给出了四种处理方法:添加翼缘或风井、梯板分布筋锚入一字形墙肢中整浇、用填充墙替代一字形墙肢及计算时不考虑一字形墙肢承担地震作用,并对上述方法进行了分析。该文认为,取消一字形墙肢,沿层高处布置梁,梁上设置轻质填充墙,则可避免楼梯间一字形墙肢的稳定性问题。该做法施工方便,建议采用。但在地震区,需提高楼梯间轻质填充墙的抗倒塌能力,保证生命通道的畅通。

关键词: 高层剪力墙, 稳定性, 能量法, 一字形墙肢, 有限元模拟

Abstract: High-rise buildings are often associated with stability problems of longitudinal exterior walls in staircases. The longitudinal exterior walls, of no support, are generally connected to other parts of the building by coupling beams. In traditional structure design, the stability of the walls is often overestimated when the walls subject to transverse bending. This study investigated the stability issue of out-plane bending of longitudinal stair walls under self-weight. Firstly, a theoretical method was proposed to calculate the critical loading based on the energy principles. The theoretical results were in good agreement with the results of finite element simulation. Subsequently, a high-rise shear wall structure was taken into consideration as a case study. The results show that the instability of the rectangular longitudinal exterior wall in staircase might occur. Finally, four measures were suggested to maintain the wall stability:1) adding flanges or air shafts; 2) anchoring the distributed reinforcements of stair slabs into the rectangular wall; 3) replacing the rectangular wall with the infill wall, and 4) calculating the earthquake action without taking into account the rectangular wall. Based on the analysis results of the four measures, it has been concluded that abolishing the rectangular wall, arranging the beam at the story height, and setting the lightweight infill wall on the beam can avoid the stability issue of the rectangular wall in a staircase. This measure is easy to construct and is recommended. However, in seismic zones, improving the collapse-resistant capacity of lightweight infill walls in staircases is necessary to keep the emergency exit unimpeded.

Key words: high-rise shear wall, stability, energy method, rectangular wall, finite element simulation

中图分类号: 

  • TU973.2
[1] Carrillo J, Lizarazo J M, Bonett R. Effect of lightweight and low-strength concrete on seismic performance of thin lightly-reinforced shear walls[J]. Engineering Structures, 2015, 93:61-69.
[2] Xu G, Wang Z, Wu B, et al. Seismic performance of precast shear wall with sleeves connection based on experimental and numerical studies[J]. Engineering Structures, 2017, 150:346-358.
[3] 肖水晶, 徐龙河, 卢啸. 具有复位功能的钢筋混凝土剪力墙设计与性能研究[J]. 工程力学, 2018, 35(8):130-137. Xiao Shuijing, Xu Longhe, Lu Xiao. Design and behavior study on reinforced concrete shear walls with self-centering capability[J]. Engineering Mechanics, 2018, 35(8):130-137. (in Chinese)
[4] 薛伟辰, 李亚, 蔡磊, 等. 双面叠合混凝土剪力墙平面内和平面外抗震性能研究[J]. 工程力学, 2018, 35(5):47-53. Xue Weichen, Li Ya, Cai Lei, et al. In-plane and out-of-plane mechanical behavior of double faced superposed concrete shear walls[J]. Engineering Mechanics, 2018, 35(5):47-53. (in Chinese)
[5] Wallace J W. Behavior, design, and modeling of structural walls and coupling beams -Lessons from recent laboratory tests and earthquakes[J]. International Journal of Concrete Structures & Materials, 2012, 6(1):3-18.
[6] Kam W Y, Pampanin S. The seismic performance of RC buildings in the 22 February 2011 Christchurch earthquake[J]. Structural Concrete, 2011, 12(4):223-233.
[7] Timoshenko S P, Gere J M. Theory of elastic stability[M]. 2nd ed. New York:McGraw-Hill, Inc., 1961:1-45.
[8] Rutenberg A, Leviathan I, Decalo M. Stability of shear-wall structures[J]. Journal of Structural Engineering, 1988, 114(3):707-716.
[9] Wang C M, Ang K K, Quek S T. Stability formulae for shear-wall frame structures[J]. Building & Environment, 1991, 26(2):217-222.
[10] 王全凤. 高层双肢剪力墙结构整体稳定的加权余量法[J]. 建筑结构学报, 1993, 14(1):54-62. Wang Quanfeng. Overall stability of coupled shear wall tall building using method of weighted residuals[J]. Journal of Building Structures, 1993, 14(1):54-62. (in Chinese)
[11] 王全凤, 龙驭球. ODE求解器求解高层双肢剪力墙结构稳定特征值问题[J]. 工程力学, 1994, 11(1):38-44. Wang Quanfeng, Long Yuqiu. Eigenvalue of stability of coupled shear wall tall building by using ODE solver[J]. Engineering Mechanics, 1994, 11(1):38-44. (in Chinese)
[12] 陈波. 高层多肢剪力墙结构的整体稳定[J]. 土木工程学报, 2003, 36(8):43-47. Chen Bo. Overall stability of multiple shear wall tall building structures[J]. China Civil Engineering Journal, 2003, 36(8):43-47. (in Chinese)
[13] Zirakian T, Zhang J. Buckling and yielding behavior of unstiffened slender, moderate, and stocky low yield point steel plates[J]. Thin-Walled Structures, 2015, 88:105-118.
[14] Jin S, Ou J, Liew J Y R. Stability of buckling-restrained steel plate shear walls with inclined-slots:theoretical analysis and design recommendations[J]. Journal of Constructional Steel Research, 2016, 117:13-23.
[15] DIN 1045-1, Plain, reinforced and prestressed concrete structures[S]. Berlin:Beuth Verlag GmbH, 2001.
[16] JGJ 3-2010, 高层建筑混凝土结构技术规程[S]. 北京:中国建筑工业出版社, 2010. JGJ 3-2010, Technical specification for concrete structures of tall building[S]. Beijing:China Architecture & Building Press, 2010. (in Chinese)
[17] 高亮, 薛建阳, 汪锦林. 型钢再生混凝土框架-再生砌块填充墙结构恢复力模型试验研究[J]. 工程力学, 2016, 33(9):85-93. Gao Liang, Xue Jianyang, Wang Jinlin. Experimental study on the restoring force model of steel reinforced recycled concrete frame infilled with recycled concrete blocks[J]. Engineering Mechanics, 2016, 33(9):85-93. (in Chinese)
[18] 彭娟, 李碧雄, 邓建辉. 芦山地震和汶川地震中空心砖填充墙震害反思[J]. 世界地震工程, 2014, 30(2):186-193. Peng Juan, Li Bixiong, Deng Jianhui. Rethink of damage to hollow-brick infill walls during Lushan earthquake and Wenchuan earthquake[J]. World Earthquake Engineering, 2014, 30(2):186-193. (in Chinese)
[19] GB 50011-2010, 建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50011-2010, Code for seismic design of buildings[S]. Beijing:China Architecture & Building Press, 2010. (in Chinese)
[20] 徐春一, 逯彪, 余希. 玻纤格栅配筋砌块墙体抗震性能试验研究[J]. 工程力学, 2018, 35(增刊):126-133. Xu Chunyi, Lu Biao, Yu Xi. Experimental study on the seismic behavior of masonry wall with fiberglass geogrid[J]. Engineering Mechanics, 2018, 35(Suppl):126-133. (in Chinese)
[1] 邱天琦, 杨军, 吴志轩, 沈兆普, 梁宇钒. 复理石顺层边坡最危险岩层倾角及简化的单一层面模型[J]. 工程力学, 2019, 36(S1): 217-221,228.
[2] 王元清, 乔学良, 贾连光, 张天雄, 蒋庆林. 单调加载下不锈钢结构梁柱栓焊混用节点承载性能分析[J]. 工程力学, 2019, 36(S1): 59-65.
[3] 赵宪忠, 戴柳丝, 黄兆祺, 任重. 钢货架结构研究现状与关键技术[J]. 工程力学, 2019, 36(8): 1-15.
[4] 范峰, 马会环, 马越洋. 半刚性节点网壳结构研究进展及关键问题[J]. 工程力学, 2019, 36(7): 1-7,29.
[5] 杨智勇, 李典庆, 曹子君, 唐小松. 考虑土质边坡多失效模式的区域概率风险分析方法[J]. 工程力学, 2019, 36(5): 216-225,234.
[6] 龙驭球. 结构力学方法论的哲思回望[J]. 工程力学, 2019, 36(4): 1-7.
[7] 庞辉, 杨军杰, 刘雪. 基于T-S模糊模型的主动悬架滑模容错控制器设计[J]. 工程力学, 2019, 36(2): 229-238,248.
[8] 汤宏伟, 钟宏志. 考虑杆件初弯曲的网壳弹塑性稳定性的弱形式求积元分析[J]. 工程力学, 2019, 36(1): 165-174.
[9] 岳子翔, 温庆杰, 卓涛. 半开式桁架桥结构稳定性分析[J]. 工程力学, 2018, 35(S1): 270-277.
[10] 朱崇绩, 董毓利. 火灾下邻边简支邻边固支双向板极限承载力的能量计算法[J]. 工程力学, 2018, 35(8): 67-78,99.
[11] 刘兴旺, 童根树, 李瑛, 胡焕, 陈东. 深基坑组合型钢支撑梁稳定性分析[J]. 工程力学, 2018, 35(4): 200-207,218.
[12] 唐贞云, 郭珺, 洪越, 李易, 李振宝. 多自由度实时子结构试验系统稳定性分析方法[J]. 工程力学, 2018, 35(3): 22-29.
[13] 李鹏飞, 朱其志, 顾水涛, 倪涛. 岩石类材料裂隙形成和扩展的相场方法模拟[J]. 工程力学, 2018, 35(3): 41-48.
[14] 崔瑶, 高晓玉, 李梦玥. 平板支座抗震性能的有限元研究[J]. 工程力学, 2018, 35(2): 169-179.
[15] 文颖, 陶蕤. 基于加速度泰勒展开的动力学方程显式积分方法[J]. 工程力学, 2018, 35(11): 26-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日