工程力学 ›› 2019, Vol. 36 ›› Issue (8): 122-132.doi: 10.6052/j.issn.1000-4750.2018.07.0401

• 土木工程学科 • 上一篇    下一篇

钢纤维高性能轻骨料混凝土多轴强度和变形特性研究

王怀亮1,2,3   

  1. 1. 广西大学土木建筑工程学院, 广西, 南宁 530004;
    2. 工程防灾与结构安全教育部重点实验室, 广西, 南宁 530004;
    3. 大连理工大学海岸与近海工程国家重点实验室, 辽宁, 大连 116024
  • 收稿日期:2018-07-17 修回日期:2018-09-28 出版日期:2019-08-25 发布日期:2019-08-10
  • 通讯作者: 王怀亮(1979-),男,河南郑州人,副教授,博士,从事结构工程研究(E-mail:whuailiang@163.com). E-mail:whuailiang@163.com
  • 基金资助:
    国家自然科学基金资助项目(51768003;51868005);广西自然科学基金资助项目(2017GXNSFAA198360);广西大学人才基金资助项目(XGZ160701);大连理工大学海岸和近海工程国家重点实验室开放基金项目(LP1618)

STRENGTH AND DEFORMATION PROPERTIES OF HIGH PERFORMANCE STEEL FIBER REINFORCED LIGHTWEIGHT CONCRETE UNDER MULTIAXIAL COMPRESSION

WANG Huai-liang1,2,3   

  1. 1. College of Civil Engineering and Architecture, Guangxi University, Nanning, Guangxi 530004, China;
    2. Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Nanning, Guangxi 530004, China;
    3. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
  • Received:2018-07-17 Revised:2018-09-28 Online:2019-08-25 Published:2019-08-10

摘要: 为了研究钢纤维掺量和三轴应力比对高性能轻骨料混凝土破坏准则和本构关系的影响规律,进行了钢纤维全轻混凝土和钢纤维次轻混凝土多轴强度和变形特性的试验研究,考虑到试验机加载能力和新拌高性能轻骨料混凝土的工作性能,选取的钢纤维体积掺量为0、0.5%、1.0%和1.5%,试验加载路径有单轴拉、压,双轴等压和真三轴压。结果发现在单轴应力和低应力比条件下,钢纤维能够明显地发挥增强阻裂作用,随着钢纤维掺量的增加,中间主应力对极限抗压强度和峰值应变的影响越来越大,且钢纤维体积掺量对两种轻骨料混凝土应力-应变曲线下降段有一定的影响;在高应力比条件下,钢纤维体积掺量对峰值强度、峰值应变和应力-应变曲线下降段无明显影响,但对高应力比下轻骨料混凝土应力-应变曲线上特有的应力平台区域有较大的影响。考虑钢纤维含量特征参数的影响,对普通骨料混凝土的Kotsovos破坏准则进行了相应的修正,得出了适合钢纤维增强轻骨料混凝土的破坏准则表达式。

关键词: 钢纤维, 高性能轻骨料混凝土, 应力比, 极限强度, 变形特性

Abstract: To investigate the influence of triaxial stress ratio and steel fiber content on the failure criterion and constitutive relationship of high-performance lightweight concrete (HPLWC), the strength and deformation of steel fiber reinforced all lightweight concrete and steel fiber reinforced semi-lightweight concrete subjected to multiaxial compression were studied experimentally. Considering the loading capacity of the testing machine and the workability requirements of fresh HPLWC, the selected loading paths consisted of uniaxial compression and tension, equal biaxial compression and truly triaxial compression. The fiber volumetric ratios were 0%, 0.5%, 1.0% and 1.5%. Results indicate that under the condition of uniaxial loading or lower stress ratios, the addition of steel fiber was beneficial to crack inhibition, strength and toughness improvement. Especially the fiber volume fraction has an obvious effect on the descending branch of the stress-strain curve. With the increase in the steel fiber content, the intermediate principal stress has a greater influence on the peak stress and peak strain. Under the condition of higher stress ratios, the steel fiber content had no obvious effect on the peak strength, peak strain and the descending branch of the stress-strain curve, but had a great effect on the plastic flow plateau of the stress-strain curve of lightweight concrete. Finally, based on the Kotsovos' strength criterion for conventional concrete and test results, a novel failure criterion was proposed for steel fiber reinforced lightweight concrete materials which considers the influence of steel fiber content parameter.

Key words: steel fiber, high performance light weight concrete, stress ratio, ultimate strength, deformation

中图分类号: 

  • TU528.572
[1] 张玉, 陈旭, 魏慧, 等. 不同强度等级的高强轻骨料混凝土配合比研究[J]. 硅酸盐通报, 2016, 35(7):2002-2006. Zhang Yu, Chen Xu, Wei Hui, et al. Mixture of high-strength lightweight aggregate concrete with different strength grades[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(7):2002-2006. (in Chinese)
[2] Cui H Z, Lo T Y, Memon S A, et al. Effect of lightweight aggregates on the mechanical properties and brittleness of lightweight aggregate concrete[J]. Construction & Building Materials, 2012, 35(10):149-158.
[3] Hassanpour M, Shafigh P, Mahmud H B. Lightweight aggregate concrete fiber reinforcement -A review[J]. Construction & Building Materials, 2012, 37(37):452-461.
[4] Soonpoh Y, Alengaram U J, Jumaat M Z. Enhancement of mechanical properties in polypropylene-and nylon-fibre reinforced oil palm shell concrete[J]. Materials & Design, 2013, 49(8):1034-1041.
[5] Li J J, Niu J G, Wan C J, et al. Investigation on mechanical properties and microstructure of high performance polypropylene fiber reinforced lightweight aggregate concrete[J]. Construction & Building Materials, 2016, 118(15):27-35.
[6] Balendran R V, Zhou F P, Nadeem A, et al. Influence of steel fibres on strength and ductility of normal and lightweight high strength concrete[J]. Building & Environment, 2002, 37(12):1361-1367.
[7] Babanajad S K, Farnam Y, Shekarchi M. Failure criteria and triaxial behaviour of HPFRC containing high reactivity metakaolin and silica fume[J]. Construction & Building Materials, 2012, 29(4):215-229.
[8] Ren G M, Wu H, Fang Q, et al. Triaxial compressive behavior of UHPCC and applications in the projectile impact analyses[J]. Construction & Building Materials, 2016, 113(6):1-14.
[9] 王怀亮, 王健. 钢纤维工业地坪有限元分析方法研究[J]. 工程力学, 2011, 28(5):129-134. Wang Huailiang, Wang Jian. Finite element method research in analysis of SFRC industrial ground floors[J]. Engineering Mechanics, 28(5):129-134. (in Chinese)
[10] Chi Y, Xu L, Mei G, et al. A unified failure envelope for hybrid fibre reinforced concrete subjected to true triaxial compression[J]. Composite Structures, 2014, 109(6):31-40.
[11] Shen L, Wang L, Song Y, et al. Comparison between dynamic mechanical properties of dam and sieved concrete under biaxial tension-compression[J]. Construction & Building Materials, 2017, 132(2):43-50.
[12] Wang L C, Song Y P. Mechanical behavior and failure criterion of the gangue-based haydite concrete under triaxial loading[J]. Materials & Structures, 2013, 48(5):1-15.
[13] Yin, W S, Su E C M, Mansur M A, et al. Biaxial tests of plain and fibre concrete[J]. ACI Material Journal, 1989, 86(3):236-243.
[14] 杨健辉, 张鹏, 王涛, 等. 全轻页岩陶粒混凝土三轴受压试验及其破坏准则[J]. 工程力学, 2015, 32(10):89-98. Yang Jianhui, Zhang Peng, Wang Tao, et al. The tests and failure criteria of full lightweight shale ceramsite concrete under triaxial compression[J]. Engineering Mechanics, 2015, 32(10):89-98. (in Chinese)
[15] 宋玉普, 赵国藩. 多轴应力下多种混凝土材料的通用破坏准则[J]. 土木工程学报, 1996, 29(1):25-32. Song Yupu, Zhao Guofan. General failure criterion for different concrete materials under multiaxial stresses[J]. China Civil Engineering Journal, 1996, 29(1):25-32. (in Chinese)
[16] Chern J C, Yang H J, Chen H W. Behavior of steel fiber reinforced concrete in multiaxial loading[J]. ACI Materials Journal, 1993, 89(1):32-40.
[17] 过镇海. 混凝土的强度和本构关系:原理与应用[M]. 北京:中国建筑工业出版社, 2004. Guo Zhenhai. The strength and constitutive relationship of concrete-Principal and application[M]. Tsinghua University Press, Beijing, 2004. (in Chinese)
[18] Kotsovos M D. A mathematical description of the strength properties of concrete under general stress[J]. Magazine of Concrete Research, 1979, 31(108):151-158.
[1] 李聪, 陈宝春, 黄卿维. 超高性能混凝土圆环约束收缩试验研究[J]. 工程力学, 2019, 36(8): 49-58.
[2] 邢国华, 杨成雨, 常召群, 秦拥军, 张广泰. 锈蚀钢筋混凝土柱的修正压-剪-弯分析模型研究[J]. 工程力学, 2019, 36(8): 87-95.
[3] 余波, 陶伯雄, 刘圣宾. 一种箍筋约束混凝土峰值应力的概率模型[J]. 工程力学, 2018, 35(9): 135-144.
[4] 王仁华, 赵沙沙. 随机点蚀损伤钢板的极限强度预测[J]. 工程力学, 2018, 35(12): 248-256.
[5] 宁喜亮, 丁一宁. 钢筋钢纤维自密实混凝土梁裂缝宽度试验研究[J]. 工程力学, 2017, 34(4): 116-124.
[6] 牛建刚, 郝吉, 孙立斌, 李伯潇. 塑钢纤维轻骨料混凝土与钢筋粘结锚固试验研究[J]. 工程力学, 2017, 34(2): 42-49.
[7] 金凌志, 梅臣, 杨蕊. 钢纤维对高强钢筋RPC无腹筋梁的剪切性能影响研究[J]. 工程力学, 2016, 33(增刊): 190-195.
[8] 王激扬, 沈玲华, 徐世烺. 钢纤维TRC薄板的常温及高温后弯曲力学性能[J]. 工程力学, 2016, 33(增刊): 6-10,17.
[9] 裴志勇,张水林,矢尾哲也. 船体结构极限海况下逐次崩溃行为研究[J]. 工程力学, 2015, 32(3): 225-232.
[10] 施兴华,杭岑,嵇春艳,石晓彦. 带有初始缺陷船用加筋板极限强度的不确定性分析[J]. 工程力学, 2015, 32(2): 221-226.
[11] 熊志鑫. 大深度载人潜器耐压壳极限强度的简化算法[J]. 工程力学, 2014, 31(5): 233-237.
[12] 丁振宇, 王效贵, 高增梁. 加载历史和裂纹闭合对疲劳裂纹扩展行为影响的数值模拟[J]. 工程力学, 2013, 30(8): 244-250.
[13] 胡长明,梅源,王雪艳. 吕梁地区压实马兰黄土变形与抗剪强度特性[J]. 工程力学, 2013, 30(10): 108-114.
[14] 吕松涛. 考虑加载速度影响的沥青混合料疲劳方程[J]. 工程力学, 2012, 29(8): 276-281.
[15] 乾增珍, 鲁先龙. 风积砂地基装配式基础下压水平力组合荷载试验[J]. 工程力学, 2012, 29(6): 133-137,195.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日