工程力学 ›› 2019, Vol. 36 ›› Issue (8): 114-121.doi: 10.6052/j.issn.1000-4750.2018.07.0397

• 土木工程学科 • 上一篇    下一篇

基于“统一理论”的异形截面多腔钢管混凝土柱轴压承载力计算

武海鹏1,2, 曹万林1, 董宏英1   

  1. 1. 北京工业大学城市与工程安全减灾教育部重点实验室, 北京 100124;
    2. 北京工业大学力学博士后流动站, 北京 100124
  • 收稿日期:2018-07-17 修回日期:2019-05-13 出版日期:2019-08-25 发布日期:2019-08-10
  • 通讯作者: 武海鹏(1989-),男,山东沂水人,讲师,博士后,从事钢-混凝土组合结构抗震研究(E-mail:15201227267@163.com). E-mail:15201227267@163.com
  • 作者简介:曹万林(1954-),男,河北乐亭人,教授,博士,博导,从事结构抗震研究(E-mail:wlcao@bjut.edu.cn);董宏英(1966-),女,辽宁锦州人,教授,博士,硕导,从事结构抗震研究(E-mail:donghy@bjut.edu.cn).
  • 基金资助:
    国家自然科学基金青年科学基金项目(51808014);北京市博士后工作经费资助项目(2017-ZZ-055)

AXIAL COMPRESSIVE STRENGTH CALCULATION BASED ON THE ‘UNIFIED THEORY’ FOR SPECIAL-SHAPED CFT COLUMNS WITH MULTIPLE CAVITIES

WU Hai-peng1,2, CAO Wan-lin1, DONG Hong-ying1   

  1. 1. Key Laboratory of Urban Security and Disaster Engineering of China Ministry of Education, Beijing University of Technology, Beijing 100124, China;
    2. Postdoctoral Research Station of Mechanics, Beijing University of Technology, Beijing 100124, China
  • Received:2018-07-17 Revised:2019-05-13 Online:2019-08-25 Published:2019-08-10

摘要: 基于钢管混凝土“统一理论”成果及部分试验结果,研究钢管混凝土柱截面形状由三角形、正方形……正n边形到圆形变化时,钢管对混凝土约束效应的变化规律。通过划分混凝土有效与非有效约束区,引入形状效率的概念,对约束效应进行折减,采用统一的圆形截面计算公式进行计算,回归分析得到截面几何形状内角角度与混凝土约束区划分的关系;然后,以四边形截面为例,研究截面图形规则性与约束效应的关系,给出计算方法;最后,将异形截面多腔钢管混凝土截面按照腔体拆分为简单多边形截面,引入形状效率和规则性的影响,分别进行轴压承载力计算,叠加各腔体承载力后得到整个截面的轴压承载力。研究结果表明:正多边形截面钢管混凝土有效与非有效约束区边界二次曲线初始切线角度与正多边形内角呈线性关系;提出的基于“统一理论”的不规则异形截面多腔钢管混凝土柱轴压承载力计算方法可较好的反应其约束特征,计算结果与实测结果符合较好,满足工程设计要求。

关键词: 结构工程, 钢管混凝土, 轴压承载力, 统一理论, 异形截面

Abstract: Based on the unified theory for concrete filled steel tubes (CFT) and the test results, the variation of the concrete confinement effect when the cross-sectional shapes change from triangle, square, regular polygon to circular is investigated. The concrete is divided into effective and ineffective confined regions. A cross-sectional efficiency coefficient is introduced to discount the confinement effect. The unified circular cross-sectional formula is applied to calculate the axial compressive strength. By regression analysis, the relationship between the cross-sectional interior angle and the confinement effect is found. Taking quadrangle sections for example, the relationship between the regularity and the confinement effect is investigated, and a calculation method is provided. By splitting a special-shaped cross-section with multiple cavities into separate polygons and considering the influence of the shape efficiency and regularity, the strength of each cavity CFT is calculated and summated to obtain the total axial compressive strength. The results show that in regular polygon steel tube confined concrete, a liner relationship is exhibited between the interior angle and the initial tangent line angle of the second-order curved boundary between the effective and ineffective confined concrete regions. The proposed axial compressive strength calculation method for special-shaped CFT columns with multiple cavities can well reflect the real confinement features. The calculation results match the test results well and the method can fulfil the engineering design requirements.

Key words: structural engineering, CFT, axial compressive strength, unified theory, special-shaped cross-section

中图分类号: 

  • TU398+.9
[1] 王立长, 王想军, 纪大海, 等. 大连国贸中心大厦超高层结构设计与研究[J]. 建筑结构, 2012, 42(2):74-80. Wang Lichang, Wang Xiangjun, Ji Dahai, et al. Structural design and analysis on Dalian Guomao Tower[J]. Building Structure, 2012, 42(2):74-80. (in Chinese)
[2] 刘鹏, 殷超, 李旭宇, 等. 天津高银117大厦结构体系设计研究[J]. 建筑结构, 2012, 42(3):1-9. Liu Peng, Yin Chao, Li Xuyu, et al. Structural system design and study of Tianjin Goldin 117 mega tower[J]. Building Structure, 2012, 42(3):1-9. (in Chinese)
[3] 杨蔚彪, 宫贞超, 常为华, 等. 中国尊大厦巨型柱分叉节点性能研究[J]. 建筑结构, 2015, 45(18):6-12. Yang Weibiao, Gong Zhenchao, Chang Weihua, et al. Performance study on branching node of mega column in China Zun Tower[J]. Building Structure, 2015, 45(18):6-12. (in Chinese)
[4] 徐礼华, 宋杨, 刘素梅, 等. 多腔式多边形钢管混凝土柱偏心受压承载力研究[J]. 工程力学, 2019, 36(4):135-146. Xu Lihua, Song Yang, Liu Sumei, et al. Study on the eccentric compressive bearing capacity of polygonal multi-cell concrete filled steel tubular columns[J]. Engineering Mechanics, 2019, 36(4):135-146. (in Chinese)
[5] 徐礼华, 杜国锋, 温芳, 等. 组合T形截面钢管混凝土柱正截面受压承载力试验研究[J]. 土木工程学报, 2009, 42(6):14-21. Xu Lihua, Du Guofeng, Wen Fang, et al. Experimental study on normal section compression bearing capacity of composite T-shaped concrete-filled steel tubular columns[J]. China Civil Engineering Journal, 2009, 42(6):14-21. (in Chinese)
[6] Yang Yuanlong, Wang Yuyin, Fu Feng, et al. Static behavior of T-shaped concrete-filled steel tubular columns subjected to concentric and eccentric compressive loads[J]. Thin-Walled Structures, 2015, 95:374-388.
[7] Mander J B, Priestley M J N, Park R. Theoretical stress-strain model for confined concrete[J]. Journal of Structure Engineering, 1988, 114(8):1804-1826.
[8] 屠永清, 刘林林, 叶英华. 多室式钢管混凝土T形短柱的非线性分析[J]. 工程力学, 2012, 29(1):134-140. Tu Yongqing, Liu Linlin, Ye Yinghua. Nonlinear analysis on multi-cell T-shaped concrete-filled steel tubular stub columns[J]. Engineering Mechanics, 2012, 29(1):134-140. (in Chinese)
[9] Tu Y Q, Shen Y F, Li P. Behaviour of multi-cell composite T-shaped concrete-filled steel tubular columns under axial compression[J]. Thin-Walled Structures, 2014, 85:57-70.
[10] 钟善桐. 圆、八边、正方与矩形钢管混凝土轴心受压性能的连续性[J]. 建筑钢结构进展, 2004, 6(2):14-22. Zhong Shantong. The continuity of axial compressive behavior of concrete filled steel tube (CFST) for circular, octagonal, square and rectangular form s[J]. Progress in Steel Building Structures, 2004, 6(2):14-22. (in Chinese)
[11] 柯晓军, 苏益声, 商效瑀, 等. 钢管混凝土组合柱压弯性能试验及承载力计算[J]. 工程力学, 2018, 35(12):134-142. Ke Xiaojun, Su Yisheng, Shang Xiaoyu, et al. Strength calculation and eccentric compressive test of steel tube-reinforced concrete composite columns[J]. Engineering Mechanics, 2018, 35(12):134-142. (in Chinese)
[12] 左志亮, 蔡健, 钟国坤, 等. 带约束拉杆T形截面钢管内核心混凝土的等效单轴本构关系[J]. 工程力学, 2011, 28(11):104-113. Zuo Zhiliang, Cai Jian, Zhong Guokun, et al. Equivalent uniaxial constitutional relationship for the encased concrete of T-shaped steel tubular with binding bars[J]. Engineering Mechanics, 2011, 28(11):104-113. (in Chinese)
[13] Zuo Zhiliang, Cai Jian, Yang Chun, et al. Axial load behavior of L-shaped CFT stub columns with binding bars[J]. Engineering Structures, 2012, 37:88-98.
[14] 左志亮, 蔡健, 林焕彬, 等. 带约束拉杆十形截面钢管内核心混凝土的等效单轴本构关系[J]. 工程力学, 2012, 29(2):177-184. Zuo Zhiliang, Cai Jian, Lin Huanbin, et al. Equivalent uniaxial constitutive relationship for the encased concrete of cross-shaped steel tubular with binding bars[J]. Engineering Mechanics, 2012, 29(2):177-184. (in Chinese)
[15] Xu Wu, Han Linhai, Li Wei. Performance of hexagonal CFST members under axial compression and bending[J]. Journal of Constructional Steel Research, 2016, 123:162-175.
[16] 武海鹏, 曹万林, 董宏英, 等. 异形截面多腔钢管混凝土柱轴压承载力计算方法研究[J]. 建筑结构学报, 2016, 37(9):126-133. Wu Haipeng, Cao Wanlin, Dong Hongying, et al. Bearing capacity calculation method for special-shaped CFST columns coupled with multiple cavities under axial compression[J]. Journal of Building Structures, 2016, 37(9):126-133. (in Chinese)
[17] Wu Haipeng, Qiao Qiyun, Cao Wanlin, et al. Axial compressive behavior of special-shaped concrete filled tube mega column coupled with multiple cavities[J]. Steel and Composite Structures, 2017, 23(6):633-646.
[18] GB 50936-2014, 钢管混凝土结构技术规范[S]. 北京:中国建筑工业出版社, 2014. GB 50936-2014, Technical code for concrete filled steel tubular structures[S]. Beijing:China Architecture & Building Press, 2014. (in Chinese)
[19] 钟善桐. 钢管混凝土结构[M]. 第三版. 北京:清华大学出版社, 2003. Zhong Shantong. The concrete-filled steel tubular structures[M]. 3rd ed. Beijing:Tsinghua University Press, 2003. (in Chinese)
[20] Ren Qingxin, Han Linhai, Lam Dennis, et al. Experiments on special-shaped CFST stub columns under axial compression[J]. Journal of Constructional Steel Research, 2014, 98(9):123-133.
[1] 代鹏, 杨璐, 卫璇, 周宇航. 不锈钢管混凝土短柱轴压承载力试验研究[J]. 工程力学, 2019, 36(S1): 298-305.
[2] 钮鹏, 丁静姝, 金春福, 杨刚, 郭强. 残余应力对碳纤维增强压弯H型钢弹塑性稳定性的影响研究[J]. 工程力学, 2019, 36(S1): 31-36.
[3] 杨浩, 罗帅, 邢国然, 王伟. 杆梁组合结构的有限元分析[J]. 工程力学, 2019, 36(S1): 154-157,169.
[4] 关少钰, 白涌滔, 刘卫辉, 李银胜, 王伟. 基于统一强度理论的高强钢管混凝土柱压弯屈服准则[J]. 工程力学, 2019, 36(S1): 170-174,183.
[5] 王宇航, 王雨嫣, 胡少伟. 海洋结构CFRP环向约束钢管混凝土柱在压弯扭荷载下的力学性能研究[J]. 工程力学, 2019, 36(8): 96-105.
[6] 杨勇, 孙东德, 张超瑞, 薛亦聪, 陈阳, 于云龙. 钢管高强混凝土叠合构件受剪承载能力试验研究[J]. 工程力学, 2019, 36(8): 182-191.
[7] 袁辉辉, 吴庆雄, 陈宝春, 蔡慧雄. 平缀管式钢管混凝土格构柱拟动力试验研究[J]. 工程力学, 2019, 36(7): 67-78.
[8] 陈隽. 试论结构工程中的大数据:范式、技术与实例分析[J]. 工程力学, 2019, 36(6): 175-182.
[9] 张建春, 张大山, 董毓利, 王卫华. 火灾下钢-混凝土组合梁内力变化的试验研究[J]. 工程力学, 2019, 36(6): 183-192,210.
[10] 徐礼华, 宋杨, 刘素梅, 李彪, 余敏, 周凯凯. 多腔式多边形钢管混凝土柱偏心受压承载力研究[J]. 工程力学, 2019, 36(4): 135-146.
[11] 梁洪超, 楼文娟, 丁浩, 卞荣. 非线性振型结构HFFB试验模态力计算方法及不确定性分析[J]. 工程力学, 2019, 36(3): 71-78.
[12] 韦芳芳, 郑泽军, 喻君, 王永泉. 基于钢板屈曲分析的双钢板-混凝土组合剪力墙轴压承载力计算方法[J]. 工程力学, 2019, 36(2): 154-164.
[13] 姜志琳, 赵均海, 吕美彤, 张磊. 基于线性强化模型的双层厚壁圆筒极限内压统一解[J]. 工程力学, 2018, 35(S1): 6-12.
[14] 唐琼, 李易, 陆新征, 闫维明. 多螺箍筋柱轴压承载力研究[J]. 工程力学, 2018, 35(S1): 166-171.
[15] 武启剑, 王臣, 支旭东. 玻璃纤维增强短钢管构件轴压试验和破坏模式仿真研究[J]. 工程力学, 2018, 35(8): 184-191.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日