工程力学 ›› 2019, Vol. 36 ›› Issue (10): 50-57,85.doi: 10.6052/j.issn.1000-4750.2018.07.0390

• 土木工程学科 • 上一篇    下一篇

基于乘法定理和AL模型的风速风向联合概率分布的研究及应用

郑晓伟1, 李宏男1,2, 李超1, 刘杨1, 张皓2   

  1. 1. 大连理工大学建设工程学部, 辽宁, 大连 116024;
    2. 沈阳建筑大学土木工程学院, 辽宁, 沈阳 110168
  • 收稿日期:2018-07-13 修回日期:2019-01-22 出版日期:2019-10-25 发布日期:2019-04-11
  • 通讯作者: 李宏男(1957-),男,辽宁沈阳人,教授,工学博士,主要从事工程结构抗震、抗风、健康监测与诊断研究(E-mail:hnli@dlut.edu.cn). E-mail:hnli@dlut.edu.cn
  • 作者简介:郑晓伟(1990-),男,山东青岛人,博士生,主要从事超高层建筑多次多种灾害抗灾研究(E-mail:xwz217@163.com);李超(1989-),男,河北秦皇岛人,讲师,工学博士,主要从事桥梁结构抗震性能研究(E-mail:chao.li@mail.dlut.edu.cn);刘杨(1993-),男,江西新余人,博士生,主要从事组合结构抗多种灾害性能研究(E-mail:liuyang_dut@126.com);张皓(1983-),男,辽宁沈阳人,副教授,工学博士,主要从事钢筋混凝土结构抗震性能研究(E-mail:hzhang_sjzu@hotmail.com).
  • 基金资助:
    国家重点研发计划项目(2016YFC0701108);国家自然科学基金重点项目(51738007)

JOINT PROBABILITY DISTRIBUTION AND APPLICATION OF WIND SPEED AND DIRECTION BASED ON MULTIPLICATION RULE AND AL MODEL

ZHENG Xiao-wei1, LI Hong-nan1,2, LI Chao1, LIU Yang1, ZHANG Hao2   

  1. 1. Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China;
    2. School of Civil Engineering, Shenyang Jianzhu University, Shenyang, Liaoning 110168, China
  • Received:2018-07-13 Revised:2019-01-22 Online:2019-10-25 Published:2019-04-11

摘要: 该文开展了风速风向联合概率分布的研究,以大理地区1971年~2017年47年间的风速日值数据资料为例,选用乘法定理和AL模型两种方法建立该地区风速风向联合概率分布。首先,对各风向以及全风向风速数据的最优概率分布进行研究;其次,分别基于谐波函数和混合von Mises分布对风向的概率密度进行拟合,并进一步基于乘法定理和Angular-Linear (AL)模型推导得出了风速风向联合概率密度函数;最后,对大理地区50年重现期内的极值风速进行预测。研究结果表明:Gumbel分布能更好地描述大理地区的风速分布规律,通过AL模型获得的风速风向联合概率密度函数明显优于基于乘法定理得到的联合概率密度函数;而忽略风向的影响将明显高估大理地区的极值风速。

关键词: 风速风向联合概率密度函数, 谐波函数, von Mises分布, 乘法定理, Angular-Linear模型

Abstract: Based on the daily wind speed data recorded during 1971-2017 in Dali, China, the multiplication rule and angular-linear (AL) model are employed to construct the joint probability density function (JPDF) of wind speed and direction. Firstly, the optimal probability distribution of wind speed in all directions is determined by comparing the regression results of different distributions. Secondly, the harmonic function and the finite mixture of von Mises distribution are applied to describe the probability density function of wind direction. Furthermore, based on multiplication rules and continuous AL model, two different JPDFs of wind speed and direction are constructed. Finally, the extreme wind speed associated with 50-year return period is calculated for Dali using the established JPDF. The analysis results show that the Gumbel model is better to describe the distribution of wind speed in Dali. The AL model can provide a better fit for wind speed and direction than the approach based on multiplication rule and harmonic function. More importantly, the extreme wind speed corresponding to the 50-year return period in Dali could be significantly overestimated when the effect of wind direction is neglected.

Key words: joint probability density function of wind speed and direction, harmonic function, von Mises distribution, multiplication rule, Angular-Linear model

中图分类号: 

  • TU312.1
[1] Carta J A, Ramírez P, Velázquez S. A review of wind speed probability distributions used in wind energy analysis:Case studies in the Canary Islands[J]. Renewable & Sustainable Energy Reviews, 2009, 13(5):933-955.
[2] 李宏男, 王杨, 伊廷华. 极值风速概率方法研究进展[J]. 自然灾害学报, 2009,18(2):15-26. Li Hongnan, Wang Yang, Yi Tinghua. Advance in research on extreme wind speed models[J]. Journal of Natural Disasters, 2009, 18(2):15-26. (in Chinese)
[3] Zhou J, Erdem E, Li G, et al. Comprehensive evaluation of wind speed distribution models:A case study for North Dakota sites[J]. Energy Conversion & Management, 2010, 51(7):1449-1458.
[4] 陈朝晖, 汤海涛. 基于Monte-Carlo法的极值风速模型研究[J]. 工程力学, 2009, 26(增刊1):193-197. Chen Zhaohui, Tang Haitao. The extreme wind speed predicting model of typhoon by using monte carlo method[J]. Engineering Mechanics, 2009, 26(Suppl 1):193-197. (in Chinese)
[5] Simiu E, Heckert N A. Ultimate wind loads and direction effects in non-hurricane and hurricane-prone regions[J]. Environmetrics, 2015, 9(4):433-444.
[6] 王浩, 徐梓栋, 陶天友, 等. 基于2008-2015年实测数据的苏通大桥风速风向联合分布分析[J]. 东南大学学报(自然科学版), 2016, 46(4):836-841. Wang Hao, Xu Zidong, Tao Tianyou, et al. Analysis on joint distribution of wind speed and direction on sutong bridge based on measured data from 2008 to 2015[J]. Journal of Southeast University (Natural Science Edition), 2016. 46(4):836-841. (in Chinese)
[7] Smith O E. An application of distributions derived from the bivariate normal density function[C]. Honolulu, AMER Meteorological Soc, 1971:162-168.
[8] Jones R H. Fitting a circular distribution to a histogram[J]. Journal of Applied Meteorology, 1976, 15(1):94-98.
[9] Johnson R A, Wehrly T E. Some angular-linear distributions and related regression models[J]. Journal of the American Statistical Association, 1978, 73(363):602-606.
[10] Mcwilliams B, Newman M M, Sprevak D. The probability distribution of wind velocity and direction[J]. Wind Engineering, 1979, 3(4):269-273.
[11] Weber R. Estimator for the standard deviation of wind direction based on moments of the cartesian components[J]. Journal of Applied Meteorology, 1991. 30(9):1341-1353.
[12] Wehrly T E. Statistical analysis of circular Data[J]. Technometrics, 1993, 37(2):229-230.
[13] Erdem E, Shi J. Comparison of