工程力学 ›› 2019, Vol. 36 ›› Issue (7): 67-78.doi: 10.6052/j.issn.1000-4750.2018.07.0388

• 土木工程学科 • 上一篇    下一篇

平缀管式钢管混凝土格构柱拟动力试验研究

袁辉辉1,2, 吴庆雄1,3, 陈宝春1, 蔡慧雄4   

  1. 1. 福州大学土木工程学院, 福建, 福州 350116;
    2. 工程结构福建省高校重点实验室, 福建, 福州 350116;
    3. 福建省土木工程多灾害防治重点实验室, 福建, 福州 350116;
    4. 福建省交通规划设计院, 福建, 福州 350004
  • 收稿日期:2018-07-13 修回日期:2018-11-02 出版日期:2019-07-06 发布日期:2019-07-06
  • 通讯作者: 吴庆雄(1973-),男,福建人,研究员,博士,博导,从事桥梁与结构工程的研究(E-mail:wuqingx@fzu.edu.cn). E-mail:wuqingx@fzu.edu.cn
  • 作者简介:袁辉辉(1985-),男,福建人,副研究员,博士,从事桥梁与结构工程的研究(E-mail:yuanhh@fzu.edu.cn);陈宝春(1958-),男,福建人,教授,博士,博导,从事桥梁与结构工程的研究(E-mail:baochunchen@fzu.edu.cn);蔡慧雄(1989-),男,福建人,硕士,从事桥梁工程的研究(E-mail:1293627299@qq.com).
  • 基金资助:
    国家自然科学基金项目(51508104,51678154)

Pseudo-dynamic test of CFST lattice columns with flat lacing tubes

YUAN Hui-hui1,2, WU Qing-xiong1,3, CHEN Bao-chun1, CAI Hui-xiong4   

  1. 1. Department of Civil Engineering, Fuzhou University, Fuzhou, Fujian 350116, China;
    2. Fujian Key Laboratory of Engineering Structures, Fuzhou, Fujian 350116, China;
    3. Fujian Key Laboratory of Civil Engineering Disaster Prevention, Fuzhou, Fujian 350116, China;
    4. Fujian Communications Planning & Design Institute, Fuzhou, Fujian 350004, China
  • Received:2018-07-13 Revised:2018-11-02 Online:2019-07-06 Published:2019-07-06

摘要: 在平缀管式钢管混凝土格构柱拟静力试验研究的基础上,进行了2个1∶8缩尺模型的拟动力试验,分别采用2008年汶川大地震和1995年日本阪神大地震的地震动时程记录作为输入地震波,研究在不同强度地震和主余震作用下此类结构的变形、强度、刚度、耗能等抗震性能。研究结果表明:平缀管式钢管混凝土格构柱具有良好的抗震性能,在8度多遇、基本、罕遇、极罕遇地震作用下,结构处于弹性工作状态;在9度罕遇地震作用下,钢管混凝土柱肢发生屈服,结构进入弹塑性工作状态;随着地震动峰值加速度的增加,柱底钢管应变急剧增加,柱顶最大响应位移非线性增长;直至试验加载结束,柱肢底部塑性铰区域未形成屈服环,结构无明显破坏。主余震作用加剧了结构的累积损伤,结构的刚度退化现象比较明显,在经历1次9度罕遇主震和2次同等强度的余震作用后,结构弹性阶段刚度相比初始弹性刚度减小约50.0%,最大位移增大约41%。通过钢管混凝土格构柱在各地震工况下的强度与变形的验算,进一步表明此类结构具有足够的强度储备和良好的变形能力,在经历多次强震后仍能保持一定的承载能力,在我国高烈度地区的桥梁工程中具有极大的应用前景。

关键词: 钢管混凝土格构柱, 平缀管, 拟动力试验, 主余震, 抗震性能

Abstract: Based on quasi-static tests, a pseudo-dynamic test of two 1/8-scaled concrete-filled steel tubular (CFST) lattice columns with flat lacing tubes was performed. The seismic records from the Wenchuan 2008 Earthquake and Kobe 1995 Earthquake were used as input ground motions. Seismic performance including deformation, strength, stiffness, and energy dissipation of the CFST lattice columns was studied with earthquakes and main aftershocks of different intensities. The results show that the CFST lattice columns with flat lacing tubes had good seismic performance. The structure was in an elastic state when subjected to the intensity 8 frequent, basic, rare, and extremely rare earthquakes. Under the intensity 9 rare earthquakes, the CFST column limbs yielded, and the structure entered the elastoplastic working state. With the increase in the peak ground acceleration, the strain of the steel tube at the bottom and the maximum response displacement at the top were both significantly increased. The plastic hinge region at the bottom of the CFST limb did not form a yield ring until the end of the test, and there was no apparent structural damage. The main aftershock aggravated the cumulative damage of the structure, and the structural stiffness degradation phenomenon was obvious. After experiencing one main shock (intensity 9 rare) and two equal-strength aftershocks, the elastic stiffness of the structure was reduced by about 50% compared with the initial elastic stiffness, while the maximum response displacement increased by 41%. Through the calculation of the strength and deformation of CFST lattice columns under various seismic conditions, it is further shown that this type of structure has sufficient strength reserves and good deformability and can still maintain a certain bearing capacity after many strong earthquakes. CFST lattice columns have a great application prospect in bridge engineering in high-intensity areas in China.

Key words: CFST lattice column, flat lacing tube, pseudo-dynamic test, main-after shock, seismic performance

中图分类号: 

  • TU398.9
[1] 陈宝春, 牟廷敏, 陈宜言, 等. 我国钢-混凝土组合结构桥梁研究进展及工程应用[J]. 建筑结构学报, 2013, 34(增刊1):1-10. Chen Baochun, Mu Tingmin, Chen Yiyan, et al. State-of-the-art of research and engineering application of steel-concrete composite bridges in China[J]. Journal of Building Structures, 2013, 34(Suppl 1):1-10. (in Chinese)
[2] 聂建国, 廖彦波. 四肢钢管混凝土格构柱轴压受力试验[J]. 清华大学学报(自然科学版), 2009, 49(12):1919-1924. Nie Jianguo, Liao Yanbo. Experiments of four-legged concrete-filled steel tubular laced columns subjected to axial loads[J]. Journal of Tsinghua University (Sci & Tech), 2009, 49(12):1919-1924. (in Chinese)
[3] 蒋丽忠, 周旺保, 伍震宇, 等. 四肢钢管混凝土格构柱极限承载力的试验研究与理论分析[J]. 土木工程学报, 2010, 43(9):55-62. Jiang Lizhong, Zhou Wangbao, Wu Zhenyu, et al. Experimental study and theoretical analysis on the ultimate load carrying capacity of four-tube concrete filled steel tubular lattice columns[J]. China Civil Engineering Journal, 2010, 43(9):55-62. (in Chinese)
[4] 陈宝春, 宋福春. 钢管混凝土平缀管格构柱极限承载力试验研究[J]. 土木工程学报, 2009, 30(3):36-44. Chen Baochun, Song Fuchun. Experimental study on ultimate load-carrying capacities of concrete filled steel tubular battened columns[J]. Journal of Building Structures, 2009, 30(3):36-44. (in Chinese)
[5] 欧智菁, 晏巧玲, 薛建阳, 等. 变截面钢管混凝土格构柱轴压极限承载力[J]. 重庆大学学报, 2016, 39(5):114-120. Ou Zhijing, Yan Qiaoling, Xue Jianyang, et al. The ultimate load carrying capacity of variable cross-sectional concrete filled steel tubular laced columns on axial load[J]. Journal of Chongqing University, 2016, 39(5):114-120. (in Chinese)
[6] 黄福云, 陈宝春, 李建中, 等. 有初应力的钢管混凝土格构柱轴压试验研究[J]. 建筑结构学报, 2013, 34(11):109-115. Huang Fuyun, Chen Baochun, Li Jianzhong, et al. Experimental study on influence of initial stress on concrete filled steel tubular latticed columns subjected to axial load[J]. Journal of Building Structures, 2013, 34(11):109-115. (in Chinese)
[7] Kawano A, Sakino K. Seismic resistance of CFT trusses[J]. Engineering Structures, 2003, 25(5):607-619.
[8] 陈伯望, 邹艳花, 唐楚, 等. 四肢方圆钢管混凝土格构柱低周反复加载试验研究[J]. 土木工程学报, 2014, 47(增刊2):108-112. Chen Bowang, Zou Yanhua, Tang Chu, et cl. Contrast research on square and circular CFST laced columns pseudo-static test[J]. China Civil Engineering Journal, 2014, 47(Suppl 2):108-112. (in Chinese)
[9] 蒋丽忠, 黄志, 陈善, 等. 钢管混凝土格构柱-组合箱梁节点抗震性能试验研究[J]. 振动与冲击, 2014, 33(18):156-162. Jiang Lizhong, Huang Zhi, Chen Shan, et al. Tests for aseismic behavior of connection joints composed of concrete-filled steel tubular lattice columns and composite box girders[J]. Journal of Vibration and Shock, 2014, 33(18):156-162. (in Chinese)
[10] 袁辉辉, 吴庆雄, 陈宝春, 等. 平缀管式等截面钢管混凝土格构柱抗震性能试验与有限元分析[J]. 工程力学, 2016, 33(10):226-235. Yuan Huihui, Wu Qingxiong, Chen Baochun, et al. Seismic performance test and finite element analysis of concrete-filled steel tubular laced columns[J]. Engineering Mechanics, 2016, 33(10):226-235. (in Chinese)
[11] 袁辉辉, 吴庆雄, 陈宝春, 等. 平缀管式等截面钢管混凝土格构柱荷载-位移骨架曲线计算方法[J]. 工程力学, 2016, 33(12):206-216. Yuan Huihui, Wu Qingxiong, Chen Baochun, et al. Calculation method of load-displacement skeleton curve for uniform sectional CFST lattice column with flat lacing tube[J]. Engineering Mechanics, 2016, 33(12):206-216. (in Chinese)
[12] 欧进萍, 吴波. 压弯构件在主余震作用下的累积损伤试验研究[J]. 地震工程与工程振动, 1994, 14(3):20-29. Ou Jinping, Wu Bo. Test research on the accumulative damage of compression-flexure members under mainshock and aftershocks[J]. Earthquake Engineering and Engineering Vibration, 1994, 14(3):20-29. (in Chinese)
[13] 袁万城, 王征南, 庞于涛, 等. 连续梁桥在主震-余震序列波下的地震易损性分析[J]. 哈尔滨工程大学学报, 2016, 37(12):1671-1676. Yuan Wancheng, Wang Zhengnan, Pang Yutao, et al. Seismic fragility analysis of a continuous girder bridge subject to an earthquake mainshock-aftershock sequence[J]. Journal of Harbin Engineering University, 2016, 37(12):1671-1676. (in Chinese)
[14] 于晓辉, 吕大刚, 肖寒. 主余震序列型地震动的增量损伤谱研究[J]. 工程力学, 2017, 34(3):47-53, 114. Yu Xiaohui, Lv Dagang, Xiao Han. Incremental damage spectra of mainshock-aftershock sequence-type ground motions[J]. Engineering Mechanics, 2017, 34(3):47-53, 114. (in Chinese)
[15] 丁国, 陈隽. 序列型地震动物理随机模型研究[J]. 工程力学, 2017, 34(9):125-138. Ding Guo, Chen Jun. Study on physical random model of seismic sequences[J]. Engineering Mechanics, 2017, 34(9):125-138. (in Chinese)
[16] Hu Sheng, Gardoni Paolo, Xu Longjun. Stochastic procedure for the simulation of synthetic main shock-aftershock ground motion sequences[J]. Earthquake Engineering and Structural Dynamics, 2018, 47(11):2275-2296.
[17] André Furtado, Hugo Rodrigues, Humberto Varum, et al. Mainshock-aftershock damage assessment of infilled RC structures[J]. Engineering Structures, 2018, 175:645-660.
[18] Ehsan Omranian, Adel E. Abdelnaby, Gholamreza Abdollahzadeh. Seismic vulnerability assessment of RC skew bridges subjected to mainshock-aftershock sequences[J]. Soil Dynamics and Earthquake Engineering, 2018, 114:186-197.
[19] GB 18306-2015, 中国地震动参数区划图[S]. 北京:中国标准出版社, 2015. GB 18306-2015, Seismic ground motion parameters zonation map of China[S]. Beijing:Standards Press of China, 2015. (in Chinese)
[20] JTG/T B02-01-2008, 公路桥梁抗震设计细则[S]. 北京:人民交通出版社, 2008. JTG/T B02-01-2008, Guidelines for seismic design of highway bridges[S]. Beijing:China Communication Press, 2008. (in Chinese)
[21] 吴轶, 黄照棉, Vincent W Lee, 等. 基于刚度退化和滞回耗能的圆钢管混凝土柱损伤模型[J]. 地震工程与工程振动, 2014, 34(5):172-179. Wu Yi, Huang Zhaomian, Vincent W Lee, et al. Stiffness degradation and hysteretic energy dissipation based damage model of concrete-filled circular steel tube columns[J]. Earthquake Engineering and Engineering Vibration, 2014, 34(5):172-179. (in Chinese)
[22] CJJ 166-2011, 城市桥梁抗震设计规范[S]. 北京:中国建筑工业出版社, 2011. CJJ 166-2011, Code for seismic design of urban bridges[S]. Beijing:China Architecture & Building Press, 2011. (in Chinese)
[23] GB 50936-2014, 钢管混凝土结构技术规范[S]. 北京:中国建筑工业出版社, 2014. GB 50936-2014, Technical code for concrete filled steel tubular structures[S]. Beijing:China Architecture & Building Press, 2014. (in Chinese)
[24] GB 50011-2010, 建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50011-2010, Code for seismic design of buildings[S]. Beijing:China Architecture & Building Press, 2010. (in Chinese)
[1] 李达, 牟在根. 内嵌VV-SPSW平面钢框架结构抗震性能研究[J]. 工程力学, 2019, 36(S1): 210-216.
[2] 杨志坚, 韩嘉明, 雷岳强, 赵海龙, 胡嘉飞. 预应力混凝土管桩与承台连接节点抗震性能研究[J]. 工程力学, 2019, 36(S1): 248-254.
[3] 张浩, 连鸣, 苏明周, 程倩倩, 关彬林. 含可更换剪切型耗能梁段-高强钢组合框筒结构静力弹塑性数值分析[J]. 工程力学, 2019, 36(S1): 78-85.
[4] 侯立群, 闫维明, 陈适才, 陆新征. 内置角钢改进夹心节点抗震性能研究与抗剪承载力计算[J]. 工程力学, 2019, 36(7): 79-88.
[5] 邓明科, 董志芳, 杨铄, 王露, 周铁钢. 高延性混凝土加固震损砌体结构振动台试验研究[J]. 工程力学, 2019, 36(7): 116-125.
[6] 王宇航, 刘元九, 周绪红. 腹板屈曲约束钢连梁抗震性能研究[J]. 工程力学, 2019, 36(6): 49-59,69.
[7] 杨参天, 解琳琳, 李爱群, 陈越. 足尺空腔式RC框架柱抗震性能试验研究[J]. 工程力学, 2019, 36(6): 60-69.
[8] 牟犇, 王君昌, 崔瑶, 庞力艺, 松尾真太朗. 一种改进型方钢管柱与钢梁连接节点抗震性能研究[J]. 工程力学, 2019, 36(6): 164-174.
[9] 曾磊, 谢炜, 郑山锁, 陈熠光, 任雯婷. T形配钢型钢混凝土柱-钢梁框架抗震性能研究[J]. 工程力学, 2019, 36(5): 157-165.
[10] 种迅, 张蓝方, 万金亮, 王德才, 叶献国, 解琳琳, 邵徽斌. 两层带开洞预制剪力墙抗震性能试验研究与数值模拟分析[J]. 工程力学, 2019, 36(5): 176-183.
[11] 李腾飞, 苏明周, 隋龑, 马磊, 韩丹. 高强钢组合K形偏心支撑钢框架抗震性能混合试验[J]. 工程力学, 2019, 36(4): 100-108,124.
[12] 董金芝, 张富文, 李向民. 框架-预应力摇摆墙结构抗震性能试验研究[J]. 工程力学, 2019, 36(4): 167-176.
[13] 徐龙河, 武虎. 设置自复位耗能支撑的斜拉桥横向抗震性能研究[J]. 工程力学, 2019, 36(4): 177-187.
[14] 王伟, 胡书领, 邹超, 陈越时. 节点性能对分层装配支撑钢框架抗震性能的影响研究[J]. 工程力学, 2019, 36(4): 206-213.
[15] 王景全, 王震, 高玉峰, 诸钧政. 预制桥墩体系抗震性能研究进展:新材料、新理念、新应用[J]. 工程力学, 2019, 36(3): 1-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日