工程力学 ›› 2019, Vol. 36 ›› Issue (8): 235-247.doi: 10.6052/j.issn.1000-4750.2018.07.0380

• 机械工程学科 • 上一篇    下一篇

翼型动态风洞试验洞壁效应研究

李国强1,2, 张卫国2, 黄霞2, 王勋年1,2   

  1. 1. 空气动力学国家重点实验室, 绵阳 621000;
    2. 中国空气动力研究与发展中心低速空气动力学研究所, 绵阳 621000
  • 收稿日期:2018-07-06 修回日期:2018-12-07 出版日期:2019-08-25 发布日期:2019-08-10
  • 通讯作者: 李国强(1987-),男,安徽人,助理研究员,硕士,主要从事实验流体力学研究(E-mail:liguoqiang5169299@126.com). E-mail:liguoqiang5169299@126.com
  • 作者简介:张卫国(1974-),男,山东人,副研究员,博士,主要从事旋翼空气动力学研究(E-mail:zhangweiguo@tsinghua.edu.cn);黄霞(1984-),女,四川人,助理研究员,博士,主要从事低速风洞试验技术研究(E-mail:hx_1984.4@163.com);王勋年(1962-),男,江西人,研究员,博士,博导,主要从事空气动力学研究(E-mail:xunnian@sohu.com).
  • 基金资助:
    国家973项目(2014CB046200);装备预先研究项目(30103010304)

STUDY ON WIND TUNNEL WALL INTERFERENCE IN DYNAMIC AIRFOIL TEST

LI Guo-qiang1,2, ZHANG Wei-guo2, HUANG Xia2, WANG Xun-nian1,2   

  1. 1. State Key Laboratory of Aerodynamics, Mianyang 621000, China;
    2. Low Speed Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China
  • Received:2018-07-06 Revised:2018-12-07 Online:2019-08-25 Published:2019-08-10

摘要: 翼型动态失速导致气动非线性特征突出,与洞壁效应耦合给风洞试验数据带来极大的不确定性,该文通过试验和数值手段揭示了翼型动态试验洞壁效应产生机理和影响规律,结果表明:相比于静态试验,由于洞壁的存在,动态试验翼型的尾流区的总压和静压分布更不均匀,动态试验翼型在相同迎角下的洞壁干扰更严重,表现为翼型在大迎角段,洞壁干扰导致模型中间截面附近和端部截面附近的速度分布和压力分布差异更明显,且相比于压力面,吸力面流动的二维性变得较差。侧壁干扰抑制了翼型中间截面附近的流向分离,诱导了端部附近的展向分离流。上洞壁和下洞壁的非定常压力系数随翼型实时迎角变化也呈迟滞环曲线,迟滞环方向相反,且脉动一阶主频率与翼型俯仰振荡频率一致。风洞洞壁干扰下,翼型动态失速三维涡结构呈“Ω”型。风洞上下壁干扰使得翼型线性段的升力系数和升力线斜率均增加,诱导翼型提前失速;在负行程,则使得翼型升力系数降低。侧壁干扰在负行程诱导了翼型表面的展向流动、减小了翼型弦向流动速度,引起翼型升力系数减小,正行程范围则影响较小,且翼型失速延迟。FL-11风洞翼型动态试验的上下壁干扰效应为主导因素;但是侧壁干扰不可忽略,特别是在翼型振荡周期的大迎角和负行程范围。

关键词: 翼型, 动态, 俯仰振荡, 风洞试验, 洞壁干扰

Abstract: The aerodynamic nonlinear characteristics of airfoil caused by dynamic stall are prominent, and the coupling effect with wall interference brings great uncertainty to wind tunnel test data. In view of this, the mechanism and influence law of the wall effect in the airfoil dynamic test are revealed by means of experiment and numerical method. The results show that:compared to the static test, due to the existence of the wall interference, both the total pressure and the static pressure distribution of the wake zone during the dynamic test of airfoil are even more inhomogeneous. The wind tunnel wall interference of dynamic airfoil test is more serious. The differences of the velocity and pressure distribution on the middle section and the end section of airfoil are more obvious. Compared with the pressure surface, the two-dimensional flow of the suction surface becomes worse. The side wall interference suppresses the flow separation near the middle section of airfoil, and induces a spanwise separation flow near the end. The unsteady pressure coefficient of the upper and lower wall versus real-time attack angle also shows a hysteresis effect, the direction of the hysteresis loop is opposite, and the main characteristic frequency of the wall pressure fluctuation equals to the oscillation frequency of airfoil pitching. Influenced by the wind tunnel wall interference, the three-dimensional dynamic stall vortex structure of the airfoil is "Omega" type. In the positive stroke, the lift coefficient and the lift line slope are increased by the upper and lower wall of the wind tunnel, and the airfoil is induced to be stalled in advance. In the negative stroke, the lift coefficient of airfoil is reduced. The sidewall interference induces a spanwise flow on airfoil surface, reduces the chord-orientation flow velocity of airfoil, causes the reduction of lift coefficient in the negative stroke, but the interference effect is less in the positive stroke, besides the dynamic stall is delayed. The upper and lower wall interference of the dynamic airfoil test in the FL-11 wind tunnel should be a dominant factor. However, the sidewall interference cannot be ignored, especially at the high angle of attack and negative stroke during the oscillation period of airfoil.

Key words: airfoil, dynamic, pitching oscillation, wind tunnel test, wall interference

中图分类号: 

  • TK83
[1] 白井艳, 张磊, 李星星, 等. 风洞洞壁对风力机翼型气动特性的影响分析[J]. 中国科学:物理学力学天文学, 2016, 46(12):124707-1-124707-10. Bai Jingyan, Zhang Lei, Li Xingxing, et al. Analyzing the effect of wind tunnel wall on the aerodynamic performance of airfoils[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2016, 46(12):124707-1-124707-10. (in Chinese)
[2] Ramsay R, Hoffman M. Effects of grit roughness and pitch oscillations on the S809 airfoil.[NREL/TP-442-7817] [R]. Columbus:The Ohio State University, 1995.
[3] Allan M, Badcock K J. A CFD investigation of wind tunnel wall influences on pitching delta wings[J]. Molecular Biology & Evolution, 2002, 22(11):1-8.
[4] Castro B M, Jones K D, Platzer M F, et al. Numerical investigation of transonic flutter and modeling of wind tunnel interference effects[J]. Faculty and Researcher Publications, 200323(1):1-9.
[5] Jin J, Ren X, Gao C, et al. Analysis of the effects of wall interference on 0.4×0.8-meter transonic wind tunnel airfoils tests[R]. 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Grapevine (Dallas/Ft. Worth Region), Texas, AIAA 2013-0641, 2013.
[6] 高超, 张乐惠, 苏耀西, 等. 超临界翼型风洞实验的侧壁干扰研究[J]. 力学学报, 1987, 19(4):91-96. Gao Chao, Zhang Lehui, Su Yaoxi, et al. The investigation of sidewall effects in wind tunnel with supercritical airfoils testing[J]. Acta Mechanica Sinica, 1987, 19(4):91-96. (in Chinese)
[7] 卢勇. 自适应壁风洞原理应用于洞壁干扰修正的研究[D]. 西安:西北工业大学, 2007. Lu Yong. Application of adaptive wall wind tunnel principle to wall interference correction[D]. Xi'an:Northwestern Polytechnical University, 2007. (in Chinese)
[8] Bailey A, Wood S A. Further development of a high speed wind tunnel of rectangular cross-section[R]. British ARC. RM. 1853, 1938.
[9] Maskell E C. Closed wind tunnel. In:A theory of the blocage effects on bluff bodies and stalled wings[R]. London:Her Majesty's Sationery Office, 1965.
[10] Hackett J E, Sampath S, Phillips C G. Determination of wind tunnel constraint effects by a unified pressure signature method[R]. Marietta:National Aeronautics and Space Administration, NASA-CR-166186, 1982.
[11] 丁克文, 张文华. 三角翼大幅度俯仰运动非定常测压实验洞壁干扰研究[J]. 空气动力学学报, 2000, 18(3):330-335. Ding Kewen, Zhang Wenhua. The research of wall interference on unsteady pressure tests for delta wing undergoing large amplitude pitching motions[J]. Acta Aerodynamica Sinica, 2000, 18(3):330-335. (in Chinese)
[12] 张卫国, 武杰, 兰波, 等. 旋翼翼型低速风洞静、动态试验技术研究[C]//中国力学大会, 上海, 2015. Zhang Weiguo, Wu Jie, Lan Bo, et al. Static and dynamic test technology for rotor airfoil low speed wind tunnel[C]//China Mechanics Conference, Shanghai, 2015. (in Chinese)
[13] 何龙, 武杰. 旋翼翼型高速风洞试验壁压法修正研究[J]. 南京航空航天大学学报, 2017, 49(2):183-188. He Long, Wu Jie. Correction research of wall pressure method for rotor airfoil in high speed wind tunnel[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2017, 49(2):183-188. (in Chinese)
[14] Platzer M F. Wind tunnel interference on oscillating airfoils in low supersonic flow[J]. Acta Mechanica, 1973, 16(2):115-126.
[15] 刘雄, 梁湿, 陈严, 等. 风力机翼型动态失速气动特性仿真[J]. 工程力学, 2015, 32(3):203-211. Liu Xiong, Liang Shi, Chen Yan, et al. Dynamic stall simulation of wind turbine airfoils[J]. Engineering Mechanics, 2015, 32(3):203-211. (in Chinese)
[16] Duraisamy K, Mccroskey W J, Baeder J D. Analysis of wind tunnel wall interference effects on subsonic unsteady airfoil flows[J]. Journal of Aircraft, 2007, 44(5):1683-1690.
[17] Klein A, Kai R, Gardner A D, et al. Numerical comparison of dynamic stall for 2d airfoils and an airfoils model in the DNW-TWG[J]. Journal of the American helicopter society, 2012, 57(4):042007-1-042007-13.
[18] Cheng J. Wind Tunnel wall interference effects on an oscillating aerofoil in the stall regime[R]. 33rd AIAA Applied Aerodynamics Conference Dallas, TX, AIAA, 2015:2015-2717.
[19] 惠增宏, 王龙, 徐倩. 风力机翼型动态测压试验技术研究[J]. 实验流体力学, 2012, 26(4):6-10. Hui Zenghong, Wang Long, Xu Qian. Dynamic pressure measurement techniques on wind turbine airfoil[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(4):6-10. (in Chinese)
[20] 夏玉顺, 郗忠祥. NACA0012翼型动态失速特性和测压方法的研究[J]. 航空学报, 1996, 17(7):26-31. Xia Yushun, Xi Zhongxiang. Dynamic stall characters of NACA 0012 airfoil and investigations of dynamic pressure measure methods[J]. Acta Aeronautica Et Astronautica Sinica, 1996, 17(7):26-31. (in Chinese)
[21] Butterfield C P, Musial W P, Simms D A. Combined experiment phase I final report.[NREL/TP-257-4655] [R]. Golden, Colorado:National Renewable Energy Laboratory, 1992.
[22] 焦予秦, 乔志德. 翼型与风洞侧壁交接角区分离流动研究[J]. 力学学报, 2002, 34(5):785-789. Jiao Yuqin, Qiao Zhide. The study on separated juncture flow between airfoil and wind tunnel side wall[J]. Acta Mechanica Sinica, 2002, 34(5):785-789. (in Chinese)
[23] 任旭东, 赵子杰, 高超, 等. NACA0012翼型抖振现象实验研究[J]. 工程力学, 2015, 32(5):236-242 Ren Xudong, Zhao Zijie, Gao Chao, et al. Experimental study on the buffet phenomenon of NACA0012 airfoil[J]. Engineering Mechanics, 2015, 32(5):236-242. (in Chinese)
[24] 党会学, 杨智春. 受侧壁面限制的涡对融合[J]. 工程力学, 2010, 27(7):226-231. Dang Huixue, Yang Zhichun. Merging process of vortex pair with side-wall confinement[J]. Engineering Mechanics, 2010, 27(7):226-231. (in Chinese)
[25] 吕超, 王同光. 三维动态失速模型研究[J]. 应用数学和力学, 2011, 32(4):375-382. Lv Chao, Wang Tongguang. Modelling of threedimensional dynamic stall[J]. Applied Mathematics and Mechanics, 2011, 32(4):375-382. (in Chinese)
[26] 刘健, 蒋永, 吴金华. 基于iDDES的双三角翼大迎角非定常涡破裂特征分析[J]. 工程力学, 2016, 33(4):241-249. Liu Jian, Jiang Yong, Wu Jinhua. Analysis on characteristics of unsteady vortex breakdown flows around a double-delta wings at high incidence based on iDDES method[J]. Engineering Mechanics, 2016, 33(4):241-249. (in Chinese)
[27] 叶正寅, 解亚军, 武洁. 模型振动对翼型流场和气动性能的影响[J]. 工程力学, 2009, 26(4):240-245. Ye Zhengyin, Xie Yajun, Wu Jie. The effects of wind-tunnel model vibration on flow field and aerodynamics of an airfoil[J]. Engineering Mechanics, 2009, 26(4):240-245. (in Chinese)
[28] Kohzai M, Ueno M, Koga S, et al. Wall and support interference corrections of NASA common research model wind tunnel tests in JAXA[R]. 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Grapevine (Dallas/Ft. Worth Region), Texas, AIAA 2013-0963, 2013.
[1] 陈琳琳, 崔会敏, 郑云飞, 刘庆宽. 大跨柱面网壳结构风荷载试验研究[J]. 工程力学, 2019, 36(S1): 189-193.
[2] 安苗, 刘庆宽, 马文勇, 刘小兵. 椭圆形体育馆悬挑罩棚风荷载分布规律的试验研究[J]. 工程力学, 2019, 36(S1): 199-202.
[3] 周佳豪, 马文勇, 黄伯城. 临界雷诺数区光滑圆柱振动与气动力研究[J]. 工程力学, 2019, 36(S1): 306-310.
[4] 王策, 刘庆宽, 贾娅娅. 双圆形煤棚风荷载分布研究[J]. 工程力学, 2019, 36(S1): 165-169.
[5] 金浏, 余文轩, 杜修力, 张帅, 李冬. 低应变率下混凝土动态拉伸破坏尺寸效应细观模拟[J]. 工程力学, 2019, 36(8): 59-69,78.
[6] 金浏, 郝慧敏, 张仁波, 杜修力. 高温下混凝土动态压缩行为细观数值研究[J]. 工程力学, 2019, 36(6): 70-78,118.
[7] 李维勃, 王国砚, 钱志浩, 王昊. 基于径向基函数的冷却塔风场重构[J]. 工程力学, 2019, 36(5): 226-234.
[8] 胡伟成, 杨庆山, 张建. 湍流边界层中三维山丘地形风场大涡模拟[J]. 工程力学, 2019, 36(4): 72-79.
[9] 梁洪超, 楼文娟, 丁浩, 卞荣. 非线性振型结构HFFB试验模态力计算方法及不确定性分析[J]. 工程力学, 2019, 36(3): 71-78.
[10] 张景钰, 张明金, 李永乐, 房忱, 向活跃. 高速铁路路堤-路堑过渡段复杂风场和列车气动效应风洞试验研究[J]. 工程力学, 2019, 36(1): 80-87.
[11] 宋春明, 苏杭, 姜红艳. 铝合金梁受低速撞击动态响应的试验研究[J]. 工程力学, 2018, 35(9): 145-152.
[12] 王浩, 柯世堂. 不同四塔组合形式对特大型冷却塔局部非高斯风压分布影响研究[J]. 工程力学, 2018, 35(8): 162-171.
[13] 胡君逸, 李跃明, 李海波, 程昊. 考虑热应力、热变形正交各向异性板的动特性及响应规律[J]. 工程力学, 2018, 35(8): 218-229.
[14] 王国盛, 路德春, 杜修力, 李萌, 穆嵩. 混凝土材料真实动态强度及率效应机理研究[J]. 工程力学, 2018, 35(6): 58-67.
[15] 李尚斌, 林永峰, 樊枫. 倾转旋翼气动特性风洞试验与数值模拟研究[J]. 工程力学, 2018, 35(6): 249-256.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张伯艳;陈厚群. LDDA动接触力的迭代算法[J]. 工程力学, 2007, 24(6): 0 -006 .
[2] 陈有亮;邵伟;周有成. 水饱和混凝土单轴压缩弹塑性损伤本构模型[J]. 工程力学, 2011, 28(11): 59 -063, .
[3] 吴方伯;黄海林;陈伟;周绪红;. 肋上开孔对预制预应力混凝土带肋薄板施工阶段挠度计算方法的影响研究[J]. 工程力学, 2011, 28(11): 64 -071 .
[4] 李宗利;杜守来. 高渗透孔隙水压对混凝土力学性能的影响试验研究[J]. 工程力学, 2011, 28(11): 72 -077 .
[5] 王坤;谢康和;李传勋;童磊. 特殊条件下考虑起始比降的双层地基一维固结解析解[J]. 工程力学, 2011, 28(11): 78 -082 .
[6] 姜亚洲;任青文;吴晶;杜小凯. 基于双重非线性的混凝土坝极限承载力研究[J]. 工程力学, 2011, 28(11): 83 -088 .
[7] 吴明;彭建兵;徐平;孙苗苗;夏唐代. 考虑土拱效应的挡墙后土压力研究[J]. 工程力学, 2011, 28(11): 89 -095 .
[8] 陆本燕;刘伯权;邢国华;吴涛. 桥梁结构基于性能的抗震设防目标与性能指标研究[J]. 工程力学, 2011, 28(11): 96 -103, .
[9] 李忠献,黄 信. 行波效应对深水连续刚构桥地震响应的影响[J]. 工程力学, 2013, 30(3): 120 -125 .
[10] 尚仁杰;郭彦林;吴转琴;张心斌;孙文波. 基于索合力线形状的车辐式结构找形方法[J]. 工程力学, 2011, 28(11): 145 -152 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日