工程力学 ›› 2019, Vol. 36 ›› Issue (8): 96-105.doi: 10.6052/j.issn.1000-4750.2018.07.0377

• 土木工程学科 • 上一篇    下一篇

海洋结构CFRP环向约束钢管混凝土柱在压弯扭荷载下的力学性能研究

王宇航1,2, 王雨嫣1,2, 胡少伟1,2   

  1. 1. 重庆大学土木工程学院, 重庆 400045;
    2. 山地城镇建设与新技术教育部重点实验室, 重庆 400045
  • 收稿日期:2018-07-06 修回日期:2019-01-25 出版日期:2019-08-25 发布日期:2019-08-10
  • 通讯作者: 王宇航(1985-),男,重庆人,教授,博士,从事组合结构研究(E-mail:wangyuhang@cqu.edu.cn). E-mail:wangyuhang@cqu.edu.cn
  • 作者简介:王雨嫣(1993-),女,重庆人,硕士生,从事组合结构研究(E-mail:yuyan__wang@126.com);胡少伟(1969-),男,河南人,教授,博士,从事混凝土结构与组合结构研究(E-mail:hushaowei@cqu.edu.cn).
  • 基金资助:
    国家自然科学基金项目(51778085);重庆市技术创新与应用示范(社会民生类重点研发)项目(cstc2018jscx-mszdX0099);重庆市基础科学与前沿技术研究专项一般项目(cstc2017jcyjAX0238)

STUDY ON THE MECHANICAL PROPERTIES OF CFRP CIRCUMFERENTIALLY CONFINED CONCRETE FILLED STEEL TUBE COLUMN OF MARINE STRUCTURE UNDER COMPRESSION-BENDING-TORSION COMBINED LOAD

WANG Yu-hang1,2, WANG Yu-yan1,2, HU Shao-wei1,2   

  1. 1. School of Civil Engineering of Chongqing University, Chongqing 400045, China;
    2. Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing 400045, China
  • Received:2018-07-06 Revised:2019-01-25 Online:2019-08-25 Published:2019-08-10

摘要: 为了研究CFRP环向约束钢管混凝土柱在压弯扭复合荷载下的力学性能,该文开展了4个CFRP环向约束钢管混凝土柱和2个钢管混凝土柱的拟静力试验,主要参数为CFRP层数和轴压比,得到了在弯扭、压弯扭两种荷载作用下柱的破坏模式和荷载-变形曲线。试验结果表明, CFRP环向约束钢管混凝土柱的破坏模式为弯型破坏,其破坏过程为:塑性铰区域钢管局部屈曲、CFRP形成环向裂纹,随后CFRP断裂、与钢管剥离,最后钢管局部屈曲部位开裂。轴力的存在会使得钢管更容易出现“象腿”破坏模式。在弯扭荷载下, CFRP环向约束对钢管混凝土的延性以及承载力提高不明显;在压弯扭荷载下, CFRP环向约束能有效提高钢管混凝土的延性及其耗能能力,减缓刚度退化,但对承载力的提高不明显。此外,增加CFRP层数能有效抑制钢管的局部屈曲,增强耗能能力。

关键词: CFRP环向约束钢管混凝土, 拟静力, 压弯扭, CFRP层数, 耗能能力

Abstract: In order to study the mechanical properties of CFRP circumferentially confined concrete filled steel tube column under combined compression-bending-torsion load, pseudo-static tests were conducted, including 4 CFRP circumferentially confined concrete filled steel tube columns and 2 concrete filled steel tube columns. The number of CFRP layers and axial load ratio were studied. The failure modes and the load-deformation hysteretic curves under bending-torsion and compression-bending-torsion load were obtained. The experimental results showed that the failure mode of CFRP circumferentially confined concrete filled steel tube column was bending failure and the process could be summarized as:the local buckling of steel tube initialed in plastic hinge area and circumferential cracks of CFRP appeared, then CFRP ruptured and was peeled off steel tube, and the steel tube finally cracked in the buckling region. The existence of axial force made the failure mode of steel tube more likely to be the "elephant leg" type. CFRP confinement had little effect on the bearing capacity and ductility of concrete filled steel tube under bending-torsion load. For CFRP circumferentially confined concrete filled steel tube columns subjected to compression-bending-torsion load, CFRP confinement can improve the ductility and energy dissipation capacity of concrete filled steel tube effectively, and it can delay stiffness degradation despite of little improvement of the bearing capacity. Furthermore, the energy dissipation capacity of members increased with the increasing CFRP layers as the local buckling of the steel tube was restricted effectively.

Key words: CFRP circumferentially confined concrete filled steel tube, pseudo-static test, compressionbending-torsion, layers of CFRP, energy-dissipation capacity

中图分类号: 

  • TU398+.9
[1] Choi K, Xiao Y, He W. Confined concrete-filled tubular columns[J]. Journal of Structural Engineering, 2005, 131(3):488-497.
[2] Teng J G, Yu T, Fernando D. Strengthening of steel structures with fiber-reinforced polymer composites[J]. Journal of Constructional Steel Research, 2012, 78(12):131-143.
[3] 朱崇钊. CFRP及CFRP结构在海水腐蚀环境下的耐久性能研究[D]. 山东:青岛理工大学, 2006. Zhu Chongzhao. Study on durability of CFRP and CFRP structures in seawater corrosion environment[D]. Shandong:Qingdao University of Technology, 2006. (in Chinese)
[4] 王庆利, 顾威, 赵颖华. CFRP-钢复合圆管内填混凝土轴压短柱试验研究[J]. 土木工程学报, 2005, 38(10):48-52. Wang Qingli, Gu Wei, Zhao Yinghua. An experimental study on concentrically compressed concrete filled circular CFRP-steel composite tubular stub columns[J]. China civil engineering journal, 2005, 38(10):48-52. (in Chinese)
[5] 陶忠, 庄金平, 于清. FRP约束钢管混凝土轴压柱力学性能研究[J]. 工业建筑, 2005, 35(9):20-23. Tao Zhong, Zhuang Jinping, Yu Qing. Mechanical behavior of stub columns of FRP-confined concretefilled steel tubes[J]. Industrial Construction, 2005, 35(9):20-23. (in Chinese)
[6] 顾威, 赵颖华, 尚东伟. CFRP-钢管混凝土轴压短柱承载力分析[J]. 工程力学, 2006, 23(1):149-153. Gu Wei, Zhao Yinghua, Shang Dongwei. Load carrying capacity of concrete filled CFRP-steel tubes under axial compression[J]. Engineering Mechanics, 2006, 23(1):149-153. (in Chinese)
[7] Tao Z, Han L H, Zhuang J P. Axial loading behavior of CFRP strengthened concrete-filled steel tubular stub columns[J]. Advances in Structural Engineering, 2007, 1(10):37-46.
[8] 于峰, 牛荻涛, 王忠文, 等. FRP约束钢管混凝土柱承载力分析[J]. 哈尔滨工业大学学报, 2007, 39(2):44-46. Yu Feng, Niu Ditao, Wang Zhongwen, et al. Analysis on bearing capacity of FRP confined concrete filled steel tubes[J]. Journal of Harbin Institute of Technology, 2007, 39(2):44-46. (in Chinese)
[9] 顾威, 赵颖华, 贾永新. CFRP钢管混凝土长柱承载力的研究[J]. 工程力学, 2008, 25(7):147-152. Gu Wei, Zhao yinghua, Jia Yongxin. Research on bearing capacity of long concrete-filled CFRP-steel tubular columns with axiai compression[J]. Engineering Mechanics, 2008, 25(7):147-152. (in Chinese)
[10] Liu Lan, Lu Y. Axial bearing capacity of short FRP confined concrete-filled steel tubular columns[J]. Journal of Wuhan University of Technology-Mater, 2010, 8(63):1116-1126.
[11] Hu Y M, Yu T, Teng J G. FRP-confined circular concrete-filled thin steel tubes under axial compression[J]. Journal of Composites for Construction, 2011, 15(5):850-860.
[12] Teng J G, Hu Y M, Yu T. Stress-strain model for concrete in FRP-confined steel tubular columns[J]. Engineering Structures, 2013, 49(2):156-167.
[13] Dong C X, Kwan A K H, Ho J C M. Axial and lateral stress-strain model for concrete-filled steel tubes with FRP jackets[J]. Engineering Structures, 2016, 126:365-378.
[14] 王庆利, 叶茂, 周琳. 圆CFRP一钢管混凝土柱受弯性能研究[J]. 土木工程学报, 2008, 41(10):31-38. Wang Qingli, Ye Mao, Zhou Lin. Study on the flexural behaviour of concrete filled circular CFRP-steel tubular members[J]. China Civil Engineering Journal, 2008, 41(10):31-38. (in Chinese)
[15] Wei Y, Wu G, Wu Z S, et al. Flexural behavior of concrete-filled FRP-steel composite circular tubes[J]. Advanced Materials Research, 2011, 243:1316-1320.
[16] Sundarraja M C, Prabhu G G. Experimental investigation on strengthening of CFST members under flexure using CFRP fabrics[J]. Arabian Journal for Science & Engineering, 2014, 39(2):659-668.
[17] 王庆利, 董羽, 孙涛, 等. CFRP环向约束圆钢管混凝土扭转性能试验[J]. 沈阳建筑大学学报(自然科学版), 2009, 25(2):267-271. Wang Qingli, Dong Yu, Sun Tao, et al. Experimental study on torsion behavior of the concrete filled circular steel tube confined by CFRP circumferentially[J]. Journal of Shenyang Jianzhu University (Natural Science), 2009, 25(2):267-271. (in Chinese)
[18] 王庆利, 刘洋, 董志峰. 圆CFRP-钢管混凝土扭转性能试验研究[J]. 土木工程学报, 2009, 42(11):91-101. Wang Qingli, Liu Yang, Dong Zhifeng. Experimental study of the torsion behavior of concrete filled circular CFRP-steel tube[J]. China Civil Engineering Journal, 2009, 42(11):91-101. (in Chinese)
[19] 车媛. CFRP-钢管混凝土压弯柱的力学性能研究[D]. 大连:大连理工大学, 2013. Che Yuan. Study on mechanical behaviour of concrete filled CFRP-steel tubular beam-columns[D]. Dalian:Dalian University of Technology, 2013. (in Chinese)
[20] 王庆利, 周博, 谭鹏宇. 圆CFRP-钢管混凝土(C-CFRP-CFST)压弯构件的静力性能[J]. 工程力学, 2012, 29(增刊2):154-158. Wang Qingli, Zhou Bo, Tan Pengyu. Static performance of the concrete filled circular CFRP-steel tubular (C-CFRP-CFST) beam-column[J]. Engineering mechanics, 2012, 29(Suppl 2):154-158. (in Chinese)
[21] Teng J G, Hu Y M, Yu T. Stress-strain model for concrete in FRP-confined steel tubular columns[J]. Engineering Structures, 2013, 49(4):156-167.
[22] Dong C X, Kwan A K, Ho J C M. Axial and lateral stress-strain model for concrete-filled steel tubes with FRP jackets[J]. Engineering Structures, 2016, 126(11):365-378.
[23] 秦鹏. CFRP约束钢管混凝土柱的抗震性能研究[D]. 长沙:湖南大学, 2016. Qin Peng. Research of seismic performance on CFRP confined concrete-filled steel tubular columns[D]. Changsha:Hunan University, 2016. (in Chinese)
[24] 车媛, 王庆利, 邵永波, 等. 圆CFRP-钢管混凝土压弯柱滞回性能试验研究[J]. 土木工程学报, 2011, 44(7):46-54. Che Yuan, Wang Qingli, Shao Yongbo, et al. Experimental study on hysteretic behaviors of concrete filled circular CFRP-steel tubular beam-columns[J]. China Civil Engineering Journal, 2011, 44(7):46-54. (in Chinese)
[25] 朱春阳, 赵颖华, 孙丽. FRP约束薄壁钢管混凝土抗震性能试验[J]. 第25届全国结构工程学术会议论文集, 2016, I:516-527. Zhu Chunyang, Zhao Yinghua, Sun Li. Seismic experiment of FRP confining concrete filled thin wall steel tube[J]. China Academic Journal Electronic Publishing House, 2016, I:516-527. (in Chinese)
[26] 朱春阳, 赵颖华, 李晓飞. FRP-钢管-混凝土柱抗震性能试验研究[J]. 复合材料学报, 2013, 30(1):180-186. Zhu Chunyang, Zhao Yinghua, LI Xiaofei. Experimental study on seismic property of concrete filled FRP-steel tube[J]. Library Theory and Practice, 2013, 30(1):180-186. (in Chinese)
[27] 王庆利, 牛献军, 冯立明. 圆CFRP-钢管混凝土压弯构件滞回性能的参数分析与恢复力模型[J]. 工程力学, 2017, 34(增刊):159-166. Wang Qingli, Niu Xianjun, Feng Liming. Parameyric analysis and restoring force model of hysteretic behavior of circular concrete filled CFRP-steel tubular beam-column[J]. Engineering Mechanics, 2017, 34(Suppl):159-166. (in Chinese)
[28] Yu T, Hu Y M, Teng J G. FRP-confined circular concrete-filled steel tubular columns under cyclic axial compression[J]. Journal of Constructional Steel Research, 2014, 94(94):33-48.
[29] 王宇航, 聂建国, 樊健生, 等. 罕遇地震下曲线钢-混凝土组合梁桥的墩柱扭转效应[J]. 工程力学, 2014, 31(9):42-50, 56. Wang Yuhang, Nie Jianguo, Fan Jiansheng, et al. Torsion effect in piers of curved steel-concrete composite bridges under rare earthquake[J]. Engineering Mechanics, 2014, 31(9):42-50, 56. (in Chinese)
[30] GBT 3354-1999, 定向纤维增强塑料拉伸性能试验方法[S]. 北京:中国标准出版社, 1999. GBT 3354-1999, Test method for tensile properties of oriented fiber reinforced plastics[S]. Beijing:China Standards Press, 1999. (in Chinese)
[31] 唐九如. 钢筋混凝土框架节点抗震[M]. 南京:东南大学出版社, 1989:56. Tang Jiuru. Seismic resistance of joints in reindorced concrete frames[M]. Nanjing:Southeast University Press, 1989:56. (in Chinese)
[1] 李达, 牟在根. 内嵌VV-SPSW平面钢框架结构抗震性能研究[J]. 工程力学, 2019, 36(S1): 210-216.
[2] 焦驰宇, 马银强, 刘陆宇, 龙佩恒, 侯苏伟. FPS支座双向加载拟静力试验与数值模拟研究[J]. 工程力学, 2019, 36(S1): 86-91.
[3] 徐龙河, 孙雨生, 要世乾, 李忠献. 装配式自复位耗能支撑恢复力模型与试验验证[J]. 工程力学, 2019, 36(6): 119-127,146.
[4] 曾磊, 谢炜, 郑山锁, 陈熠光, 任雯婷. T形配钢型钢混凝土柱-钢梁框架抗震性能研究[J]. 工程力学, 2019, 36(5): 157-165.
[5] 种迅, 张蓝方, 万金亮, 王德才, 叶献国, 解琳琳, 邵徽斌. 两层带开洞预制剪力墙抗震性能试验研究与数值模拟分析[J]. 工程力学, 2019, 36(5): 176-183.
[6] 董金芝, 张富文, 李向民. 框架-预应力摇摆墙结构抗震性能试验研究[J]. 工程力学, 2019, 36(4): 167-176.
[7] 邓明科, 吕浩, 宋恒钊. 外包钢板-高延性混凝土组合连梁抗震性能试验研究[J]. 工程力学, 2019, 36(3): 192-202.
[8] 尚庆学, 李泽, 刘瑞康, 王涛. 管线系统抗震支架力学试验研究[J]. 工程力学, 2018, 35(S1): 120-125,133.
[9] 朱柏洁, 张令心, 王涛. 轴力作用下剪切钢板阻尼器力学性能试验研究[J]. 工程力学, 2018, 35(S1): 140-144.
[10] 肖水晶, 徐龙河, 卢啸. 具有复位功能的钢筋混凝土剪力墙设计与性能研究[J]. 工程力学, 2018, 35(8): 130-137.
[11] 汪大洋, 韩启浩, 张永山. 多块混凝土板拼装组合钢板剪力墙试验与有限元参数影响研究[J]. 工程力学, 2018, 35(7): 83-93,138.
[12] 韩强, 贾振雷, 王晓强, 黄超. 内嵌碟簧型自复位防屈曲支撑性能试验及其恢复力模型研究[J]. 工程力学, 2018, 35(6): 144-150,190.
[13] 姚新强, 孙柏涛, 杨在林, 陈宇坤, 杨绪连. 地震灾害农居易损性新方法研究[J]. 工程力学, 2018, 35(6): 191-199.
[14] 郑山锁, 刘巍, 左河山, 董立国, 李强强. 近海大气环境下考虑锈蚀的不同剪跨比RC框架梁抗震性能试验[J]. 工程力学, 2018, 35(4): 78-86.
[15] 种迅, 万金亮, 蒋庆, 叶献国, 王德才, 邢伟, 邵徽斌. 水平拼缝部位增强叠合板式剪力墙抗震性能试验研究[J]. 工程力学, 2018, 35(4): 107-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日