工程力学 ›› 2019, Vol. 36 ›› Issue (8): 87-95.doi: 10.6052/j.issn.1000-4750.2018.07.0376

• 土木工程学科 • 上一篇    下一篇

锈蚀钢筋混凝土柱的修正压-剪-弯分析模型研究

邢国华1,2, 杨成雨1, 常召群1, 秦拥军2, 张广泰2   

  1. 1. 长安大学建筑工程学院, 西安 710061;
    2. 新疆大学建筑工程学院, 乌鲁木齐 830046
  • 收稿日期:2018-07-06 修回日期:2018-09-28 出版日期:2019-08-25 发布日期:2019-08-10
  • 通讯作者: 邢国华(1983-),男,内蒙古呼和浩特人,教授,博士,博导,从事混凝土结构耐久性研究(E-mail:ghxing@chd.edu.cn). E-mail:ghxing@chd.edu.cn
  • 作者简介:杨成雨(1994-),男,山东临沂人,硕士生,从事混凝土结构耐久性研究(E-mail:chengyu_777@126.com);常召群(1992-),男,河南洛阳人,博士生,从事混凝土结构抗震性能研究(E-mail:czq199212@163.com);秦拥军(1970-),男,江苏太仓人,教授,硕士,硕导,从事建筑材料研究(E-mail:13999257880@163.com);张广泰(1963-),男,新疆伊犁人,教授,学士,硕导,从事建筑材料研究(E-mail:zgtlxh@126.com).
  • 基金资助:
    国家自然科学基金项目(51868073);新疆自治区自然科学基金项目(2018D01C038);陕西省青年科技新星资助项目(2017KJXX-37);中央高校基本科研业务费资助项目(300102288302,300102288710)

STUDY ON MODIFIED AXIAL-SHEAR-FLEXURE INTERACTION MODEL FOR CORRODED REINFORCED CONCRETE COLUMNS

XING Guo-hua1,2, YANG Cheng-yu1, CHANG Zhao-qun1, QIN Yong-jun2, ZHANG Guang-tai2   

  1. 1. School of Civil Engineering, Chang'an University, Xi'an 710061, China;
    2. School of Civil Engineering, Xinjiang University, Urumqi 830046, China
  • Received:2018-07-06 Revised:2018-09-28 Online:2019-08-25 Published:2019-08-10

摘要: 随着服役时间的增加,混凝土结构中钢筋易发生锈蚀,引起混凝土结构承载性能下降,严重影响工程结构的继续使用。该文在分析纵筋锈蚀后的屈曲效应、箍筋锈蚀后的约束效应、混凝土和钢筋材料性能劣化的基础上,建议了考虑锈蚀影响的钢筋、混凝土及锈蚀钢筋与混凝土界面粘结性能的本构模型,以锈蚀钢筋混凝土柱为研究对象,对反复荷载作用下钢筋混凝土柱的分析模型进行修正,建立了锈蚀钢筋混凝土柱压-剪-弯交互作用下极限承载力计算模型,并通过21根锈蚀混凝土柱的试验结果对建议分析模型进行了验证。研究结果表明:锈蚀钢筋混凝土柱极限承载力试验值与计算值之比的平均值为1.021,方差为0.014,建议模型极限承载力预测值与试验结果吻合较好,可用于低周反复荷载作用下锈蚀钢筋混凝土柱的承载力分析。

关键词: 粘结, 锈蚀, 极限强度, 压-剪-弯交互作用, 钢筋混凝土柱

Abstract: With the increasing of their service life, the steel reinforcements in concrete structures are prone to corrosion, which causes the bearing capacity degradation of a concrete structure. Therefore, the corrosion of reinforcing bars greatly affects the use of concrete structures. Based on analyzing the effect of corroded steel reinforcement on buckling, the confinement effect of corroded stirrup and degradation of mechanical properties of concrete and steel, the constitutive models of these materials including steel and concrete along with the bond behaviour between the steel bars and concrete were proposed in many literatures. By selecting the corroded reinforced concrete columns as the research object, an analytical model of peak lateral load capacity of corroded reinforced concrete columns under axial-shear-flexure loading was put forward by modifying the analysis model of reinforced concrete columns subjected to cyclic loading. The proposed model was verified through 21 corroded columns tests. It is believed that a good agreement between test results and prediction results for lateral load capacity is achieved with an average ratio of test results to predicted results of 1.021 and a variance of 0.014 between test results and predicted results. The suggested model can be served as a theoretical method to analyse the load bearing capacity of corroded reinforced concrete columns under cyclic loading.

Key words: bond, corrosion, ultimate strength, axial-shear-flexure interaction, reinforced concrete columns

中图分类号: 

  • TU375.3
[1] 成虎, 李宏男, 王东升, 等. 考虑锈蚀黏结退化的钢筋混凝土桥墩抗震性能分析[J]. 工程力学, 2017, 34(12):48-58. Cheng Hu, Li Hongnan, Wang Dongsheng, et al. Seismic performance analysis of reinforced concrete bridge column considering bond deterioration caused by chloride ion induced corrosion[J]. Engineering Mechanics, 2017, 34(12):48-58. (in Chinese)
[2] 郑山锁, 刘巍, 左河山, 等. 近海大气环境下考虑锈蚀的不同剪跨比RC框架梁抗震性能试验[J]. 工程力学, 2018, 35(4):78-86. Zheng Shansuo, Liu Wei, Zuo Heshan, et al. Aseismic performance test of RC frame beams considering corrosion with different shear span ratio in the coastal atmosphere[J]. Engineering Mechanics, 2018, 35(4):78-86. (in Chinese)
[3] Ye Z, Zhang W, Gu X. Deterioration of shear behavior of corroded reinforced concrete beams[J]. Engineering Structures, 2018, 168:708-720.
[4] 张昊宇, 王涛, 林旭川, 等. 尼泊尔8.1级地震钢筋混凝土框架典型震害及讨论[J]. 工程力学, 2016, 33(9):59-68. Zhang Haoyu, Wang Tao, Lin Xuchuan, et al. Seismic damages of RC frames in Nepal MS 8.1 earthquake[J]. Engineering Mechanics, 2016, 33(9):59-68. (in Chinese)
[5] Meda A, Mostosi S, Rinaldi Z, et al. Experimental evaluation of the corrosion influence on the cyclic behaviour of RC columns[J]. Engineering Structures, 2014, 76:112-123.
[6] Lee H S, Kage T, Noguchi T, et al. An experimental study on the retrofitting effects of reinforced concrete columns damaged by rebar corrosion strengthened with carbon fiber sheets[J]. Cement & Concrete Research,2003, 33(4):563-570.
[7] Ou Y C, Fan H D, Nguyen N D. Long-term seismic performance of reinforced concrete bridges under steel reinforcement corrosion due to chloride attack[J]. Earthquake Engineering & Structural Dynamics, 2013, 42(14):2113-2127.
[8] Vu N S, Yu B, Li B. Prediction of strength and drift capacity of corroded reinforced concrete columns[J]. Construction & Building Materials, 2016, 115:304-318.
[9] Choe D E, Gardoni P, Rosowsky D, et al. Probabilistic capacity models and seismic fragility estimates for RC columns subject to corrosion[J]. Reliability Engineering & System Safety, 2008, 93(3):383-393.
[10] 邢国华, 罗大明, 牛荻涛. 锈蚀钢筋混凝土柱的强度-变形分析模型[J]. 地震工程与工程振动, 2016, 36(1):91-100. Xing Guohua, Luo Daming, Niu Ditao. Deformation capacity model of corroded reinforced concrete columns[J]. Earthquake Engineering and Engineering Dynamics, 2016, 36(1):91-100. (in Chinese)
[11] Du Y G, Clark L A, Chan A H C. Effect of corrosion on ductility of reinforcing bars[J]. Magazine of Concrete Research, 2005, 57(7):407-419.
[12] Ou Y C, Susanto Y T T, Roh H. Tensile behavior of naturally and artificially corroded steel bars[J]. Construction and Building Materials, 2016, 103:93-104.
[13] Fernandez I, Bairán J M, Marí A R. Corrosion effects on the mechanical properties of reinforcing steel bars. Fatigue and behavior[J]. Construction & Building Materials, 2015, 101:772-783.
[14] Park R L, Park R, Paulay T. Reinforced concrete structures[M]. New York:John Wiley & Sons, 1975.
[15] Sezen H, Setzler E J. Reinforcement slip in reinforced concrete columns[J]. ACI Structural Journal, 2008, 105(3):280-289.
[16] Clark L A, Chan A H C, Du Y G. Residual capacity of corroded reinforcing bars[J]. Magazine of Concrete Research, 2005, 57(3):135-147.
[17] Dhakal R P, Maekawa K. Path-dependent cyclic stress-strain relationship of reinforcing bar including buckling[J]. Engineering Structures, 2002, 24(11):1383-1396.
[18] Kashani M M, Crewe A J, Alexander N A. Nonlinear stress-strain behaviour of corrosion-damaged reinforcing bars including inelastic buckling[J]. Engineering Structures, 2013, 48:417-429.
[19] Dhakal R P, Maekawa K. Reinforcement stability and fracture of cover concrete in reinforced concrete members[J]. Journal of Structural Engineering, 2002, 128(10):1253-1262.
[20] Kearsley E, Joyce A. Effect of corrosion products on bond strength and flexural behaviour of reinforced concrete slabs[J]. Journal of the South African Institution of Civil Engineers, 2014, 56(2):21-29.
[21] Coronelli D, Gambarova P. Structural assessment of corroded reinforced concrete beams:modeling guidelines[J]. ASCE Journal of Structural Engineering, 2004, 130(8):1214-1224.
[22] Molina F J, Alonso C, Andrade C. Cover cracking as a function of rebar corrosion:Part 2-Numerical model[J]. Materials & Structures, 1993, 26(9):532-548.
[23] Mander J B, Priestley M J N, Park R. Theoretical stress-strain model for confined concrete[J]. ASCE Journal of Structural Engineering, 1988, 114(8):1804-1826.
[24] El-Maaddawy T, Soudki K, Topper T. Analytical model to predict nonlinear flexural behavior of corroded reinforced concrete beams[J]. ACI structural journal, 2005, 102(4):550-559.
[25] Vecchio F J, Collins M P. The modified compression field theory for reinforced concrete elements subjected to shear[J]. ACI Structural Journal, 1986, 83(2):219-231.
[26] Mostafaei H, Kabeyasawa T. Axial-shear-flexure interaction approach for reinforced concrete columns[J]. ACI Structural Journal, 2007, 104(2):218-226.
[27] Walraven J C. Fundamental analysis of aggregate interlock[J]. ASCE Journal of the Structural Division, 1981, 107(11):2245-2270.
[28] Ou Y C, Nguyen N D. Modified axial-shear-flexure interaction approaches for uncorroded and corroded reinforced concrete beams[J]. Engineering Structures, 2016, 128:44-54.
[29] 史庆轩, 牛荻涛, 颜桂云. 反复荷载作用下锈蚀钢筋混凝土压弯构件恢复力性能的试验研究[J]. 地震工程与工程振动, 2000, 20(4):44-50. Shi Qingxuan, Niu Ditao, Yan Guiyun. Experimental research on hysteretic characteristics of corroded RC members with flexural and compressive axial loads under repeated horizontal loading[J]. Earthquake Engineering and Engineering Dynamics, 2000, 20(4):44-50. (in Chinese)
[30] 牛荻涛, 陈新孝, 王学民. 锈蚀钢筋混凝土压弯构件抗震性能试验研究[J]. 建筑结构, 2004, 34(10):36-38. Niu Ditao, Chen Xinxiao, Wang Xuemin. Experimental study on seismic performance of corroded reinforced concrete members with flexure and compression[J]. Building Structures, 2004, 34(10):36-38. (in Chinese)
[31] Goksu C. Seismic behavior of RC columns with corroded plain and deformed reinforcing bars[D]. Turkey:Istanbul Technical University, 2012.
[1] 何栋尔, 章子华, 肖云逸, 罗威, 单艳玲. CFRP-火灾后混凝土界面快速剥离试验[J]. 工程力学, 2019, 36(S1): 285-292,297.
[2] 刘兴喜, 徐荣桥. FRP加固混凝土梁粘结层剪应力分析[J]. 工程力学, 2019, 36(S1): 149-153.
[3] 徐金金, 杨树桐, 刘治宁. 碱激发矿粉海水海砂混凝土与CFRP筋粘结性能研究[J]. 工程力学, 2019, 36(S1): 175-183.
[4] 王怀亮. 钢纤维高性能轻骨料混凝土多轴强度和变形特性研究[J]. 工程力学, 2019, 36(8): 122-132.
[5] 梁兴文, 王莹, 于婧, 李林. 预制UHPC模板及采用预制模板的RC板受力性能及承载力分析[J]. 工程力学, 2019, 36(7): 146-155.
[6] 余朔, 金浩, 周顺华, 毕湘利. 氯离子及迷流共同作用下持荷盾构管片钢筋锈层形态[J]. 工程力学, 2019, 36(7): 174-183.
[7] 马颖, 王东升, 解河海, 白卫峰. 基于Bayesian理论的弯剪破坏钢筋混凝土柱变形能力概率模型[J]. 工程力学, 2019, 36(7): 216-226.
[8] 曹琛, 郑山锁, 胡卫兵, 赵彦堂, 郑捷, 周炎. 近海大气环境下锈蚀RC框架梁恢复力模型研究[J]. 工程力学, 2019, 36(4): 125-134.
[9] 张艺欣, 郑山锁, 裴培, 李磊, 秦卿, 董立国. 钢筋混凝土柱冻融损伤模型研究[J]. 工程力学, 2019, 36(2): 78-86.
[10] 杨慧, 何浩祥, 闫维明. 锈蚀和疲劳耦合作用下梁桥时变承载力评估[J]. 工程力学, 2019, 36(2): 165-176.
[11] 徐强, 郑山锁, 商校瑀. 近海大气环境作用下钢框架节点时变地震损伤研究[J]. 工程力学, 2019, 36(1): 61-69.
[12] 杨超, 杨树桐, 戚德海. BFRP筋与珊瑚混凝土粘结性能试验研究[J]. 工程力学, 2018, 35(S1): 172-180.
[13] 罗威, 肖云逸, 何栋尔, 章子华. 快速荷载下CFRP-高温后混凝土界面正拉粘结性能试验[J]. 工程力学, 2018, 35(S1): 307-312,324.
[14] 余波, 陶伯雄, 刘圣宾. 一种箍筋约束混凝土峰值应力的概率模型[J]. 工程力学, 2018, 35(9): 135-144.
[15] 张建仁, 肖林发, 彭建新, 唐皇. U型箍加固锈蚀RC梁的抗弯性能试验研究及数值分析[J]. 工程力学, 2018, 35(8): 111-121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日