工程力学 ›› 2019, Vol. 36 ›› Issue (8): 248-256.doi: 10.6052/j.issn.1000-4750.2018.07.0369

• 其他工程学科 • 上一篇    

水下爆炸作用下固支多层片组结构的塑性毁伤研究

李元龙1,2, 王金相1, 林尚剑1, 唐奎1, 陈兴旺1, 黄瑞源1   

  1. 1. 南京理工大学瞬态物理国家重点实验室, 江苏, 南京 210094;
    2. 北京航天长征飞行器研究所, 北京 100076
  • 收稿日期:2018-07-04 修回日期:2019-05-21 出版日期:2019-08-25 发布日期:2019-08-10
  • 通讯作者: 王金相(1978-),男,山东人,研究员,博士,博导,从事爆炸与冲击动力学研究(E-mail:wjx@njust.edu.cn). E-mail:wjx@njust.edu.cn
  • 作者简介:李元龙(1994-),男,河北人,硕士,从事水下爆炸及毁伤研究(E-mail:lylong2016@163.com);林尚剑(1994-),男,浙江人,博士,从事水下多战斗部联合毁伤效应研究(E-mail:linshangjian002@163.com);唐奎(1990-),男,重庆人,博士,从事爆炸与冲击动力学研究(E-mail:tkui2014@sina.com);陈兴旺(1994-),男,安徽人,博士,从事屏蔽装药安全性研究(E-mail:m18851199809@163.com);黄瑞源(1984-),男,福建人,讲师,博士,硕导,从事材料冲击动力学研究(E-mail:ryhuang@njust.edu.cn).
  • 基金资助:
    国家自然科学基金项目(11672138);预研创新项目(3020605020205)

STUDY ON PLASTIC DAMAGE OF CLAMPED MULTI-LAYER SHEET STRUCTURE CAUSED BY UNDERWATER EXPLOSION

LI Yuan-long1,2, WANG Jin-xiang1, LIN Shang-jian1, TANG Kui1, CHEN Xing-wang1, HUANG Rui-yuan1   

  1. 1. National Key Laboratory of Transient Physics, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China;
    2. Beijing Institute of Space Long March Vehicle, Beijing 100076, China
  • Received:2018-07-04 Revised:2019-05-21 Online:2019-08-25 Published:2019-08-10

摘要: 为研究固支多层片组结构在水下爆炸作用下的毁伤行为,以能量法为基础,建立了典型多层片组结构在水下爆炸冲击波作用下的塑性响应模型,给出了一定爆炸载荷迎面作用下固支多层片组结构的塑性变形以及剪切断裂毁伤计算方法。利用AUTODYN仿真软件,对不同工况下固支多层片组结构的毁伤进行了仿真研究,并开展了水下爆炸毁伤试验,测试了水下爆炸冲击波参数和多层片组结构的毁伤情况。结合数值模拟和试验结果可知,该理论模型可以很好的预测多层片组结构的毁伤破坏情况,包括其塑性变形层数、剪切破坏层数和最大破坏深度,为水下多层防护结构抗冲击设计提供了一定的依据。

关键词: 水下爆炸, 多层片组结构, 塑性毁伤, 理论模型, 数值仿真, 试验验证

Abstract: In order to study the damage behavior of a clamped multi-layer sheet structure caused by underwater explosion, a plastic response model for the typical multi-layer sheet structure due to shock waves of underwater explosion was established by an energy method. The calculation method of plastic deformation and shear fracture damage for clamped multi-layer sheet structure under certain frontal explosion loading is developed. Using the AUTODYN software, the numerical simulations of the damage of the clamped multi-layer sheet structure under different conditions were carried out. Also, the underwater explosion damage experiments were conducted and the shock-wave parameters of underwater explosion as well as the damage parameters of the multi-layer sheet structure were tested. According to the numerical simulation and experimental results, it can be found that the theoretical model can well predict the damage behavior of the multi-layer sheet structure, including the numbers of the plastic deformation layer and the shear failure layer as well as the maximum failure depth of the multilayer sheet structure. The work of this paper provides a certain basis for the anti-shock design of underwater multi-layer protective structures.

Key words: underwater explosion, multi-layer sheet structure, plastic damage, theoretical model, numerical simulation, test verification

中图分类号: 

  • O383.1
[1] Zhang Aman, Zeng Lingyu, Cheng Xiaoda, et al. The evaluation method of total damage to ship in underwater explosion[J]. Applied Ocean Research, 2011, 33(4):240-251.
[2] 李海涛, 张振华, 牟金磊, 等. 水下爆炸作用下弹塑性船体梁整体运动模型及损伤特性[J]. 工程力学, 2019, 36(1):238-256. Li Haitao, Zhang Zhenhua, Mou Jinlei, et al. Hydro-elastic-plastic dynamic response of a ship hull girder subjected to underwater explosion:a simplified theoretical model[J]. Engineering Mechanics, 2019, 36(1):238-256. (in Chinese)
[3] Taylor G I. The pressure and impulse of submarine explosion waves on plates[M]. Cambridge:Cambridge University Press, 1963.
[4] Cole R H. Underwater explosions[M]. Princeton:Princeton University Press, 1948.
[5] Ramajeyathilagam K, Vendhan C P. Deformation and rupture of thin rectangular plates subjected to underwater shock[J]. International Journal of Impact Engineering, 2004, 30(6):699-719.
[6] Rajendran R, Narasimhan K. Damage prediction of clamped circular plates subjected to contact underwater explosion[J]. International Journal of Impact Engineering, 2001, 25(4):373-386.
[7] 吴有生, 彭兴宁, 赵本立. 爆炸载荷作用下舰船板架的变形与破损[J]. 中国造船, 1995, 4(131):55-61. Wu Yousheng, Peng Xingning, Zhao Benli. Deformation and damage of ship plate under blast loading[J]. Shipbuilding of China, 1995, 4(131):55-61. (in Chinese)
[8] 吴成, 金俨, 李华新. 固支方板对水中爆炸作用的动态响应研究[J]. 高压物理学报, 2003, 17(4):275-282. Wu Cheng, Jin Ye, Li Huaxin. Dynamic response of solid supported slabs to underwater explosion[J]. Chinese Journal of High Pressure Physics, 2003, 17(4):275-282. (in Chinese)
[9] 胡小利, 王炳, 朱惠民. 射弹引起的鱼雷自导系统毁伤仿真[J]. 兵工自动化, 2015, 34(5):11-13. Hu Xiaoli, Wang Bing, Zhu Huimin. Damage simulation of torpedo homing system caused by projectiles[J]. Ordnance Industry Automation, 2015, 34(5):11-13. (in Chinese)
[10] 张振华, 朱锡, 刘润泉. 多层板架结构在水下接触爆炸作用下的毁伤理论分析方法[C]. 北京:中国力学学会学术大会, 2005. Zhang Zhenhua, Zhu Xi, Li Runquan. Theory analysis method of multi-layer board structure under underwater contact explosion[C]. Beijing:Chinese Conference of Theoretical and Applied Mechanics, 2005. (in Chinese)
[11] 周楠, 王金相, 谢君, 等. 球形弹丸作用下钢/铝爆炸复合靶的抗侵彻性能计算与分析[J]. 高压物理学报, 2013, 27(6):839-846. Zhou Nan, Wang Jinxiang, Xie Jun, et al. Calculation and analysis of anti-penetration performance of Steel/Aluminum explosive composite target under ball projectile[J]. Chinese Journal of High Pressure Physics, 2013, 27(6):839-846. (in Chinese)
[12] 方斌, 朱锡, 张振华. 水下爆炸冲击波载荷作用下船底板架的塑性动力响应[J]. 哈尔滨工程大学学报, 2008, 29(4):326-331. Fang Bin, Zhu Xi, Zhang Zhenhua. Plastic dynamic response of ship's deck frame under underwater blast shock loading[J]. Journal of Harbin Engineering University, 2008, 29(4):326-331. (in Chinese)
[13] AUTODYN. AUTODYN users manual revision 4.3[M]. California:Century Dynamics Incorporated, 2003.
[14] 肖秋平, 陈网桦, 贾宪振, 等. 基于AUTODYN的水下爆炸冲击波模拟研究[J]. 舰船科学技术, 2009, 31(2):38-43. Xiao Qiuping, Chen Wanghua, Jia Xianzhen, et al. Simulation study of underwater explosion shock wave based on AUTODYN[J]. Naval Science and Technology, 2009, 31(2):38-43. (in Chinese)
[15] Cowper G R, Symonds P S. Strain hardening and strain rate effects in the impact loading of cantilever beams[R]. Providence:Brown University, 1957.
[16] 王雷, 李玉龙, 索涛, 等. 航空常用铝合金动态拉伸力学性能探究[J]. 航空材料学报, 2013, 33(4):71-77. Wang Lei, Li Yulong, Suo Tao, et al. Dynamic tensile mechanical properties of Aluminum alloys used in aviation[J]. Journal of Aeronautical Materials, 2013, 33(4):71-77. (in Chinese)
[17] 任鹏, 田阿利, 张伟, 等. 水下冲击波载荷作用下气背固支圆板动态毁伤实验[J]. 爆炸与冲击, 2016, 36(5):617-624. Ren Peng, Tian Ali, Zhang Wei, et al. Experiment on dynamic damage of air-backed circular plates under underwater shock wave loading[J]. Explosion and Shock Waves, 2016, 36(5):617-624. (in Chinese)
[18] Zamyshlyayev B V. Dynamic loads in underwater explosion[R]. Washington D C:Naval Intelligence Support Center, 1973.
[19] 吴国民, 周心桃, 李俊. 水下爆炸作用下固支平板动态响应分析[J]. 舰船科学技术, 2013, 35(4):25-28. Wu Guomin, Zhou Xintao, Li Jun. Dynamic response analysis of clamped plate under underwater explosion[J]. Journal of Ship Science and Technology, 2013, 35(4):25-28. (in Chinese)
[1] 李海涛, 张振华, 牟金磊, 刘丽滨. 水下爆炸作用下弹塑性船体梁整体运动模型及损伤特性[J]. 工程力学, 2019, 36(1): 238-247,256.
[2] 宋子杰, 胡志强. 预测船舶碰撞与搁浅结构动力响应的程序实现[J]. 工程力学, 2018, 35(8): 245-256.
[3] 胡雄玉, 何川, 杨清浩, 吴迪. 管片衬砌配合陶粒可压缩层的支护结构与围岩相互作用模型[J]. 工程力学, 2018, 35(3): 86-95.
[4] 李宗京, 舒赣平. 剪切连接件的受力机理理论分析与试验验证[J]. 工程力学, 2018, 35(12): 63-70,80.
[5] 姜超, 胡志强, 刘昆, 王晋. 导管架平台圆形管柱撞击力的估算方法研究[J]. 工程力学, 2017, 34(7): 249-256.
[6] 王丽娟, 胡昌斌, 曾宇鑫. 水泥混凝土路面板早龄期翘曲行为数值分析研究[J]. 工程力学, 2017, 34(7): 146-155.
[7] 傅杰, 刘昆, 王自力. 强桁材结构在面内冲压载荷作用下的损伤变形机理研究[J]. 工程力学, 2017, 34(12): 248-256.
[8] 孙斌, 胡志强, 王晋. 船底肋板在尖锐礁石搁浅场景下的受力分析[J]. 工程力学, 2016, 33(增刊): 266-269,295.
[9] 朱力, 聂建国, 季文玉. 钢-混凝土组合箱型梁的滑移和剪力滞效应[J]. 工程力学, 2016, 33(9): 49-58,68.
[10] 王成华, 杨阳, 康强, 殷德政, 水涌涛. 一种新型刚度退化模型及复合材料结构渐进损伤分析的通用方法实现[J]. 工程力学, 2016, 33(4): 17-23.
[11] 杨勋, 王欢欢, 金先龙. 地震作用下隧道-列车系统动力响应及安全性分析[J]. 工程力学, 2016, 33(12): 176-185.
[12] 夏敏, 余江滔, 陆洲导. 受火后混凝土框架基于纤维模型的软件开发与试验验证[J]. 工程力学, 2016, 33(11): 163-173.
[13] 于春广, 陶功权. 地铁车轮磨耗测试及数值仿真[J]. 工程力学, 2016, 33(1): 201-208,245.
[14] 高仕赵, 徐国宾. 水工闸门垂直水动力计算方法[J]. 工程力学, 2015, 32(7): 236-242.
[15] 胡少伟,喻江,张文敬. 集中荷载作用下宽翼缘双箱组合梁剪滞效应分析[J]. 工程力学, 2015, 32(5): 120-130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日