工程力学 ›› 2019, Vol. 36 ›› Issue (10): 1-7.doi: 10.6052/j.issn.1000-4750.2018.06.ST04

• 综 述 •    下一篇

大型水平轴风力机新型叶片结构设计思想和研究进展

杨阳, 曾攀, 雷丽萍   

  1. 清华大学机械工程系, 北京 100084
  • 收稿日期:2018-06-14 修回日期:2018-12-20 出版日期:2019-10-25 发布日期:2019-01-22
  • 通讯作者: 雷丽萍(1968-),女,广西人,副教授,博士,博导,从事材料加工、数值模拟、结构设计研究(E-mail:leilp@mail.tsinghua.edu.cn). E-mail:leilp@mail.tsinghua.edu.cn
  • 作者简介:杨阳(1990-),男,广东人,博士生,从事新型风机叶片设计分析研究(E-mail:yangyang13@mails.tsinghua.edu.cn);曾攀(1963-),男,海南人,教授,博士,博导,从事计算力学、结构设计、数值模拟研究(E-mail:zengp@mail.tsinghua.edu.cn).
  • 基金资助:
    国家自然科学基金项目(51575296)

CONCEPT AND DEVELOPMENT OF NOVEL BLADE STRUCTURE OF LARGE HORIZONTAL-AXIS WIND TURBINE

YANG Yang, ZENG Pan, LEI Li-ping   

  1. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
  • Received:2018-06-14 Revised:2018-12-20 Online:2019-10-25 Published:2019-01-22

摘要: 该文首先阐释了在风力机大型化发展过程中叶片结构设计的主要问题在于大型叶片对综合结构性能的高要求与轻量化、气动性能之间的矛盾,传统悬臂梁结构叶片的承载特性限制了叶片进一步大型化发展的空间,新型叶片结构的设计开发是解决这一问题的有效手段。新型叶片结构的设计思想按其着眼点主要包括仿生柔性设计思想、分段设计思想和局部附加结构的设计思想等。在此基础上,该文综述了近年来新型叶片结构的研究进展,为大型叶片结构设计提供了参考。

关键词: 水平轴风力机, 叶片结构, 分段叶片, 柔性叶片, 多叶素叶片

Abstract: During the development of large-scale horizontal axis wind turbines, the major problem is the contradiction among the structure reliability and the requirement of light weight and aerodynamics efficiency. The structural characteristics of a traditional cantilever blade has restricted the further development of large wind turbines. The novel form of a blade structure is the effective solution to the problem, such as bionic flexible blades, segmented blades and multi-element blades. This paper reviews the state of the art of novel blade structures in recent years, providing some references for large blade design.

Key words: horizontal axis wind turbine, blade structure, segmented blade, flexible blade, multi-element blade

中图分类号: 

  • TM315
[1] World Wind Energy Association. Wind power capacity worldwide reaches 600 GW, 53.9 GW added in 2018[EB/OL]. https://wwindea.org/blog/2019/02/25/windpower-capacity-worldwide-reaches-600-gw-539-gw-added-in-2018,2019-02-25.
[2] Jamieson P. Innovation in wind turbine design[M]. Chichester:Wiley, 2011:75-104.
[3] Griffith D T, Ashwill T D. The sandia 100-meter all-glass baseline wind turbine blade:SNL100-00[R]. Albuquerque:Sandia National Laboratories, 2011.
[4] Fichaux N, Beurskens J, Jensen P H, et al. Design limits and solutions for very large wind turbines:A 20 MW turbine is feasible[R]. Brussels:European Wind Energy Association, 2011.
[5] Ichter B, Steele A, Loth E, et al. Structural design and analysis of a segmented ultralight morphing rotor (SUMR) for extreme-scale wind turbines[C]//42nd AIAA Fluid Dynamics Conference and Exhibit. New Orleans:AIAA, 2012:3270.
[6] Loth E, Steele A, Ichter B, et al. Segmented ultralight pre-aligned rotor for extreme-scale wind turbines[C]//50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Nashville:AIAA, 2012:1290.
[7] Barlas T K, van Kuik G A. Review of state of the art in smart rotor control research for wind turbines[J]. Progress in Aerospace Sciences, 2010, 46(1):1-27.
[8] Konga C, Banga J, Sugiyamab Y. Structural investigation of composite wind turbine blade considering various load cases and fatigue life[J]. Energy, 2005, 30(11/12):2101-2114.
[9] Coxa K, Echtermeyerb A. Structural design and analysis of a 10 MW wind turbine blade[J]. Energy Procedia, 2012. 24:194-201.
[10] Chen J, Wang Q, Shen W Z, et al. Structural optimization study of composite wind turbine blade[J]. Materials & Design, 2013, 46:247-255.
[11] Liao C C, Zhao X L, Xu J Z. Blade layers optimization of wind turbines using FAST and improved PSO Algorithm[J]. Renewable Energy, 2012, 42:227-233.
[12] Fischer G R, Kipouros T, Savill A M. Multi-objective optimisation of horizontal axis wind turbine structure and energy production using aerofoil and blade properties as design variables[J]. Renewable Energy, 2014, 62:506-515.
[13] Sharifi A, Nobari M R H. Prediction of optimum section pitch angle distribution along wind turbine blades[J]. Energy Conversion and Management, 2013, 67:342-350.
[14] Mishnaevsky Jr L. Composite materials in wind energy technology[M/OL]//Favorsky O N. Thermal to Mechanical Energy Conversion:Engines and Requirements. Oxford:EOLSS, 2011. https://www.eolss.net/samplechapters/C08/E3-11-42.pdf.2018-09-10
[15] Prabhakaran R T D. Future materials for wind turbine blades-a critical review[C]//Proceedings of the International Conference on Wind Energy:Materials, Engineering and Policies. Andhra Pradesh:DTU, 2012:1-8.
[16] Liu W Y, Platts M J. Concept representation, practical topology decision and analysis in composites lug design[C]//Proceedings of the International Conference on Frontiers of Design and Manufacturing. Tianjin:ICFDM, 2008:636-643.
[17] Le Gourieres D. Wind power plants:theory and design[M]. Oxford:Elsevier, 2014.
[18] Lobitz D W, Veers P S, Eisler G R, et al. The use of twist-coupled blades to enhance the performance of horizontal axis wind turbines[R]. Albuquerque:Sandia National Laboratories, 2001.
[19] Aziz S, Gale J, Ebrahimpour A, et al. Passive control of a wind turbine blade using composite material[C]//Proceedings of the ASME 2011 International Mechanical Engineering Congress & Exposition. Denver:ASME, 2011:467-476.
[20] Bottasso C L, Campagnolo F, Croce A, et al. Optimization-based study of bend-twist coupled rotor blades for passive and integrated passive/active load alleviation[J]. Wind Energy, 2013, 16:1149-1166.
[21] Rasmussen F, Petersen J T, Vølund P, et al. Soft rotor design for flexible turbines:final report[R]. Roskilde:Risø National Laboratory, 1998.
[22] Steele A, Ichter B, Qin C, et al. Aerodynamics of an ultralight load-aligned rotor for extreme-scale wind turbines[R]. Golden:National Renewable Energy Lab.(NREL), 2013.
[23] Gu R, Xu J L, Yang Y B. The Investigation of the Small Bionic Wind Turbine Based on the Seagull Airfoil[J]. Advanced Materials Research, 2011, 347:3533-3539.
[24] Zhang R K, Wu J Z. Aerodynamic characteristics of wind turbine blades with a sinusoidal leading edge[J]. Wind Energy, 2012, 15(3):407-424.
[25] Liu T, Kuykendoll K, Rhew R, et al. Avian Wing Geometry and Kinematics[J]. AIAA Journal, 2006, 44(5):954-963.
[26] Liu Wangyu, Jiaxing Gong. Adaptive bend-torsional coupling wind turbine blade design imitating the topology structure of natural plant leaves[M]//Al-Bahadly I H. Wind Turbines. Rijeka:InTech, 2011:51-86.
[27] Linscott B S, Dennett J T, Gordon L H. The Mod-2 wind turbine development project[R]. Washington:US Department of Energy, 1981.
[28] Xie W, Zeng P, Lei L. A novel folding blade of wind turbine rotor for effective power control[J]. Energy Conversion and Management, 2015, 101:52-65.
[29] Dawson M H. Variable Length Wind Turbine Blade[R]. Boise:Energy Unlimited, Inc. 2006.
[30] Lu H, Zeng P, Lei L, et al. A smart segmented blade system for reducing weight of the wind turbine rotor[J]. Energy Conversion and Management, 2014, 88:535-544.
[31] Roth Johnson P, Wirz R E. Aero-structural investigation of biplane wind turbine blades[J]. Wind Energy, 2014, 17(3):397-411.
[32] Migliore P G, Miller L, Quandt G. Wind turbine trailing edge aerodynamic brakes[R]. Golden:National Renewable Energy Laboratory, 1995.
[33] Miller S. Experimental investigation of aerodynamic devices for wind turbine rotational speed control:Phase Ⅱ[R]. Golden:National Renewable Energy Laboratory, 1996.
[34] Stuart J G, Wright A D, Butterfield C P. Considerations for an integrated wind turbine controls capability at the National Wind Technology Center:an aileron control case study for power regulation and load mitigation[R]. Golden:National Renewable Energy Laboratory, 1996.
[35] Lachenal X, Daynes S, Weaver P M. A zero torsional stiffness twist morphing blade as a wind turbine load alleviation device[J]. Smart Materials and Structures. 2013, 22(6):065016.
[36] Gaunaa M, Zahle F, Sørensen N N, et al. Quantification of the Effects of Using Slats on the Inner Part of a 10 MW Rotor[C]//Proceedings of EWEA 2012-European Wind Energy Conference & Exhibition. Copenhagen:European Wind Energy Association (EWEA), 2012:919-930.
[37] Ragheb A, Selig M. Multi-element airfoil configurations for wind turbines[C]//29th AIAA Applied Aerodynamics Conference. Honolulu:American Institute of Aeronautics and Astronautics (AIAA), 2011:3971.
[38] Narsipur S, Pomeroy B, Selig M. CFD Analysis of multielement airfoils for wind turbines[C]//30th AIAA Applied Aerodynamics Conference. New Orleans:American Institute of Aeronautics and Astronautics (AIAA), 2012:2781.
[1] 张 旭,邢静忠. 叶片局部损伤对大型水平轴风力机静动态特性影响的仿真分析[J]. 工程力学, 2013, 30(2): 406-412.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张冬娟;崔振山;李玉强;阮雪榆. 平面应变板料拉弯成形回弹理论分析[J]. 工程力学, 2007, 24(7): 0 -071 .
[2] 何浩祥;闫维明;陈彦江. 地震动加加速度反应谱的概念及特性研究[J]. 工程力学, 2011, 28(11): 124 -129 .
[3] 邢静忠;柳春图;徐永君. 埋设悬跨海底管道的屈曲分析[J]. 工程力学, 2006, 23(2): 173 -176, .
[4] 彭献;刘子建;洪家旺;. 匀变速移动质量与简支梁耦合系统的振动分析[J]. 工程力学, 2006, 23(6): 25 -29 .
[5] 史姣;王正中;蔡坤. 张量分析中简化记法在公式推导中的应用及张量分量的计算[J]. 工程力学, 2006, 23(10): 45 -48 .
[6] 陈 波;郑 瑾. 结构地震反应的半主动摩擦阻尼局域反馈控制[J]. 工程力学, 2009, 26(10): 154 -158 .
[7] 尹 犟;易伟建;胡其高. 结构整体抗震性能评估新方法[J]. 工程力学, 2010, 27(03): 123 -131 .
[8] 李 锋;岳前进. 窄锥结构的最不利动冰力[J]. 工程力学, 2010, 27(5): 191 -198 .
[9] 石卫华;钟新谷;余志武. 轴向荷载作用下K型管节点应力集中系数研究[J]. 工程力学, 2010, 27(增刊I): 48 -052 .
[10] 何 涛;李子然;汪 洋. 子午线轮胎胎面花纹块滑动磨损有限元分析[J]. 工程力学, 2010, 27(7): 237 -243, .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日