工程力学 ›› 2019, Vol. 36 ›› Issue (11): 1-12.doi: 10.6052/j.issn.1000-4750.2018.06.ST02

• 综述 •    下一篇

纵向变厚度(LP)钢板轧制技术和受弯构件承载性能研究

王元清1, 刘晓玲1, 刘明2, 班慧勇1, 李靖年2   

  1. 1. 土木工程安全与耐久教育部重点实验室, 清华大学土工程系, 北京 100084;
    2. 鞍山股份产品发展部, 辽宁, 鞍山 114009
  • 收稿日期:2018-06-14 修回日期:2018-12-18 出版日期:2019-11-13 发布日期:2019-01-22
  • 通讯作者: 王元清(1963-),男,安徽霍山人,教授,博士,主要从事结构工程研究(E-mail:wang-yq@mail.tsinghua.edu.cn). E-mail:wang-yq@mail.tsinghua.edu.cn
  • 作者简介:刘晓玲(1995-),女,山西忻州人,博士生,主要从事结构工程研究(E-mail:liuxiaoling950718@163.com);刘明(1980-),男,辽宁鞍山人,高工,硕士,主要从事建筑用钢及工程机械用钢研究(E-mail:13898006025@163.com);班慧勇(1985-),男,内蒙古呼和浩特人,助理教授,博士,主要从事结构工程研究(E-mail:banhy@tsinghua.edu.cn);李靖年(1984-),男,甘肃靖远人,高工,本科,主要从事钢材中厚板生产工艺研究(E-mail:angang_ljn@126.com).
  • 基金资助:
    国家重点研发计划子课题项目(2018YFC0705503)

ROLLING TECHNOLOGY OF LONGITUDINALLY PROFILED STEEL PLATE (LP STEEL PLATE) AND BEARING CAPACITY OF LP FLEXURAL MEMBERS

WANG Yuan-qing1, LIU Xiao-ling1, LIU Ming2, BAN Hui-yong1, LI Jing-nian2   

  1. 1. Key Laboratory of Civil Engineering Safety and Durability of China Education Ministry, Department of Civil Engineering, Tsinghua University, Beijing 100084, China;
    2. Product Development Department, Anshan Iron & Steel, Anshan, Liaoning 114009, China
  • Received:2018-06-14 Revised:2018-12-18 Online:2019-11-13 Published:2019-01-22

摘要: 纵向变厚度钢板(LP钢板)是一种新型节约型绿色钢板,可广泛运用于工业与民用建筑、桥梁船舶及其他特种结构当中,其研发和应用对促进结构优化设计,建筑节能减排有重要意义。该文介绍了国内纵向变厚度钢板特殊的轧制与矫直技术,综述了钢板材料力学性能以及翼缘纵向变厚度工形截面简支梁在弹性和弹塑性阶段变形和承载性能的理论、试验和数值分析研究结果,得出了材料性能随厚度变化的规律,提出了翼缘纵向变厚度工形截面简支梁的承载力设计值和正常使用极限状态下变形计算方法。

关键词: 纵向变厚度钢板(LP钢板), 轧制技术, 材料性能, 翼缘纵向变厚度工形截面梁, 承载力, 变形性能, 工程应用

Abstract: Longitudinally profiled steel plate (LP steel plate) is a new type of green-saving steel product which could be widely used in industrial and civil buildings, bridges and other special structures. Its research and development have a great significance for structural optimization design and energy conservation in construction. The unusual rolling and straightening technology of LP steel plate is briefly introduced. The recent researches of Tsinghua University on material performance and component bearing capacity are comprehensively reviewed, which were studied by theoretical analysis, experimental and numerical simulation. The variation of material mechanical properties is concluded. The design methods of I-section beam with longitudinally variable thickness flanges for bearing capacity design value and deformation behavior at serviceability limit state are proposed.

Key words: longitudinally profiled steel plate (LP steel plate), rolling technology, material property, I-section beam with longitudinally variable thickness flanges, bearing capacity, deformation performance, engineering applications

中图分类号: 

  • TU391
[1] 刘晓玲, 王元清, 王玉银, 等. 纵向变厚度(LP)钢板的工程应用和研究进展[J]. 工业建筑, 2015, 45(增刊):1027-1035. Liu Xiaoling, Wang Yuanqing, Wang Yuyin, et al. Review of structural application and research of longitudinally profiled steel plate (LP steel plate)[J]. Industrial building, 2015, 45(Suppl):1027-1035. (in Chinese)
[2] Shinichi S, Ryuji M, Tadashi O, et al. Steel products for shipbuilding[J]. JFE Technical Report, 2004, 2:41-48.
[3] Fukumoto Y, Nagai M. Steel bridges:new steels and innovative erection methods[J]. Progress in Structural Engineering and Materials, 2000, 2:34-40.
[4] Okano S. High performance steels for bridge construction and examples of their application[J]. Welding International, 2008, 22(11):746-754.
[5] Aoki T, Takaku T, Fukumoto Y, et al. Experimental investigation for seismic performance of framed structures having longitudinally profiled plates[J]. Journal of Constructional Steel Research, 2008, 64(7):875-881.
[6] Takaku T, Fukumoto Y, Aoki T, et al. Seismic design of bridge piers with stiffened box sections using LP plates[C]. 13th World Conference on Earthquake Engineering. Vancouver, B.C., Canada:Canadian Association for Earthquake Engineering; International Association for Earthquake Engineering, 2004, Paper no. 3224.
[7] Fukumoto Y, Uenoya M, Nakamura M, et al. Cyclic performance of stiffened square box columns with thickness tapered plates[J]. Journal of Steel and Structures, 2003, 3(2):107-115.
[8] Ikeuohi T, Nose M, Nishimura N, et al. Improvement of earthquake performance of steel bridge piers using tapered plates[C]. Proceeding of the 1st International Conference on Steel & Composite Structures. Pusan, Korea:Techno-Press, 2001:1557-1564.
[9] 杜平. 纵向变厚度扁平材轧制理论与控制策略研究[D]. 沈阳:东北大学, 2008. Du Ping. Research on rolling theory and control strategy for longitudinally profiled flat steel[D]. Shenyang:Northeastern University, 2008. (in Chinese)
[10] 丛津功, 李新玲, 李靖年, 等. 纵向变厚度(LP)钢板轧制技术研究[C]. 中国金属学会第十一届中国钢铁年会论文集. 北京:中国金属学会, 2017:1-6. Cong Jingong, Li Xinling, Li Jingnian, et al. The research of longitudinally profiled (LP) plate rolling technology[C]. Proceedings of the 11th China iron and steel annual conference. Beijing:The Chinese Society for Metals, 2017:1-6. (in Chinese)
[11] Richter K, Schmackpfeffer H. Longitudinally profiled plates cut costs[J]. Joining & Materials, 1988, 11:270-273.
[12] Fukumoto Y, Takaku T, Aoki T, et al. Innovative use of profiled steel plates for seismic structural performance[J]. Journal of Advances in Structural Engineering, 2005, 8(3):247-57.
[13] 王元清, 刘晓玲, 刘明, 等. 纵向变厚度(LP)钢板力学性能试验研究[J]. 钢结构, 2017, 4(32):16-21. Wang Yuanqing, Liu Xiaoling, Liu Ming, et al. Experimental Research on mechanical properties of longitudinally profiled steel plate[J]. Steel Structure, 2017, 4(32):16-21. (in Chinese)
[14] Yuanqing Wang, Xiaoling Liu, Huiyong Ban, et al. Deformation behavior at SLS of welded I-section steel beams with longitudinally profiled flanges[J]. Journal of Constructional Steel Research, 2018, 146:122-134.
[15] Murakami S, Nobuo N. Ultimate strength evaluation of tapered plate in compression[C]. 5th International Colloquium on Stability and Ductility of Steel Structures. Nagoya, Japan:Elsevier, 1997:133-140.
[16] Takuji K, Kunitomo S, Takashi Y. Performance of thin-walled steel structures by longitudinally and transversely profiled steel plates[C]. IABSE Symposium Report. Weimar, Germany:International Association for Bridge and Structural Engineering, 2007, 93(1):549-556.
[17] 王元清, 刘晓玲, 刘明, 等. 翼缘纵向变厚度工型截面梁变形性能试验[J]. 哈尔滨工业大学学报, 2017, 49(12):24-31. Wang Yuanqing, Liu Xiaoling, Liu Ming, et al. Experimental study on deformation performance of I-section beam with longitudinally variable thickness flanges[J]. Journal of Harbin Institute of Technology, 2017, 49(12):24-31. (in Chinese)
[18] 王元清, 刘晓玲, 刘明, 等. 翼缘纵向变厚度工型截面简支梁承载性能有限元分析[J]. 沈阳建筑大学学报(自然科学版), 2017, 33(3):385-392. Wang Yuanqing, Liu Xiaoling, Liu Ming, et al. Finite element analysis on bearing behavior of I-section beam with longitudinally variable thickness flanges[J]. Journal of Shenyang Jianzhu University (Natural Science), 2017, 33(3):385-392. (in Chinese)
[19] 班慧勇, 施刚, 石永久. 高强钢焊接构件工字形横截面残余应力试验及统一分布模型研究[J]. 工程力学, 2014, 31(8):83-91. Ban Huiyong, Shi Gang, Shi Yongjiu. Experimental and unified model investigations on residual stress within high strength steel welded I-sections[J]. Engineering Mechanics, 2014, 31(8):83-91. (in Chinese)
[1] 蒋友宝, 尹倩倩, 罗军, 付涛. 基于承载力拟合的钢拱不利几何缺陷分析[J]. 工程力学, 2019, 36(S1): 203-209.
[2] 庞瑞, 张艺博, 张天鹏, 李倩倩, 梁书亭. 分布式连接全装配RC楼盖横板向弯曲刚度计算方法研究[J]. 工程力学, 2019, 36(S1): 37-43,58.
[3] 张天龙, 丁阳, 李忠献. 基于损伤的单层球面网壳结构地震剩余承载力评估与优化分析[J]. 工程力学, 2019, 36(S1): 131-137.
[4] 程麦理. 黄土场地桩基横向力学行为数值模拟[J]. 工程力学, 2019, 36(S1): 229-233.
[5] 梁兴文, 汪萍, 徐明雪, 于婧, 李林. 免拆UHPC模板RC梁受弯性能试验及承载力分析[J]. 工程力学, 2019, 36(9): 95-107.
[6] 田稳苓, 温晓东, 彭佳斌, 徐丽丽, 李子祥. 新型泡沫混凝土轻钢龙骨复合墙体抗剪承载力计算方法研究[J]. 工程力学, 2019, 36(9): 143-153.
[7] 王威, 赵春雷, 苏三庆, 任坦, 刘格炜, 董晨阳. 带栓钉波形钢板混凝土组合构件粘结滑移性能与承载力试验研究[J]. 工程力学, 2019, 36(9): 108-119.
[8] 徐明雪, 梁兴文, 汪萍, 王照耀. 超高性能混凝土梁正截面受弯承载力理论研究[J]. 工程力学, 2019, 36(8): 70-78.
[9] 武海鹏, 曹万林, 董宏英. 基于“统一理论”的异形截面多腔钢管混凝土柱轴压承载力计算[J]. 工程力学, 2019, 36(8): 114-121.
[10] 杨勇, 孙东德, 张超瑞, 薛亦聪, 陈阳, 于云龙. 钢管高强混凝土叠合构件受剪承载能力试验研究[J]. 工程力学, 2019, 36(8): 182-191.
[11] 侯立群, 闫维明, 陈适才, 陆新征. 内置角钢改进夹心节点抗震性能研究与抗剪承载力计算[J]. 工程力学, 2019, 36(7): 79-88.
[12] 梁兴文, 王莹, 于婧, 李林. 预制UHPC模板及采用预制模板的RC板受力性能及承载力分析[J]. 工程力学, 2019, 36(7): 146-155.
[13] 邹慧辉, 陈万祥, 郭志昆, 周子欣. 火灾后钢管RPC柱近距离爆炸残余承载力研究[J]. 工程力学, 2019, 36(7): 184-196.
[14] 王威, 刘格炜, 苏三庆, 张龙旭, 任英子, 王鑫. 波形钢板剪力墙及组合墙抗剪承载力研究[J]. 工程力学, 2019, 36(7): 197-206,226.
[15] 叶冬晨, 陈以一. 基于分块组合法的多孔板塑性极限状态分析[J]. 工程力学, 2019, 36(6): 36-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王鹏鹏, 郭晓霞, 桑勇, 邵龙潭, 陈之祥, 赵博雅. 基于数字图像相关技术的砂土全场变形测量及其DEM数值模拟[J]. 工程力学, 0, (): 0 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日