工程力学 ›› 2019, Vol. 36 ›› Issue (11): 50-61.doi: 10.6052/j.issn.1000-4750.2018.06.0363

• 土木工程学科 • 上一篇    下一篇

基于细观模拟的混凝土动态压缩强度尺寸效应研究

金浏1, 余文轩1, 杜修力1, 张帅1, 杨旺贤1, 李冬1,2   

  1. 1. 北京工业大学城市减灾与防灾防护教育部重点实验室, 北京 100124;
    2. 清华大学土木系, 北京 100084
  • 收稿日期:2018-06-30 修回日期:2018-09-13 出版日期:2019-11-13 发布日期:2019-04-10
  • 通讯作者: 杜修力(1962-),男,四川广安人,长江学者特聘教授,博士,博导,主要从事地震工程领域研究(E-mail:duxiuli@bjut.edu.cn). E-mail:duxiuli@bjut.edu.cn
  • 作者简介:金浏(1985-),男,江苏泗阳人,教授,博士,博导,主要从事混凝土与混凝土结构领域研究工作(E-mail:jinliu@bjut.edu.cn);余文轩(1993-),男,浙江人,硕士,主要从事混凝土结构尺寸效应方面研究(E-mail:ywxmailbox@163.com);张帅(1992-),男,河南人,硕士,主要从事混凝土结构尺寸效应方面研究(E-mail:zhangshuai_bjut@163.com);杨旺贤(1994-),男,河南人,硕士,主要从事混凝土材料尺寸效应方面研究(E-mail:yang_wangxian@163.com).李冬(1988-),男,北京人,助理研究员,博士,主要从事混凝土及混凝土结构领域研究(E-mail:winte_lee@126.com).
  • 基金资助:
    国家重点研发计划项目(2018YFC1504302,2016YFC0701100);国家自然科学基金项目(51822801,51421005)

RESERCH ON SIZE EFFECT OF DYNAMIC COMPRESSIVE STRENGTH OF CONCRETE BASED ON MESO-SCALE SIMULATION

JIN Liu1, YU Wen-xuan1, DU Xiu-li1, ZHANG Shuai1, YANG Wang-xian1, LI Dong1,2   

  1. 1. Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China;
    2. Department of Civil Engineering, Tsinghua University, Beijing 100084, China
  • Received:2018-06-30 Revised:2018-09-13 Online:2019-11-13 Published:2019-04-10

摘要: 在混凝土静态破坏尺寸效应方面开展的研究已经较为完善,而在动态破坏尺寸效应方面的研究还远没有形成一个统一的认知。混凝土尺寸效应根源于内部组成的非均质性,从细观角度出发,考虑材料非均质及细观组分的应变率效应,将混凝土看作由骨料、砂浆及界面过渡区组成的三相复合材料,建立了混凝土动态破坏行为研究的细观数值分析方法,对不同应变率(1×10-5 s-1~2×102 s-1)及不同尺寸方形混凝土试件单轴压缩破坏行为进行模拟与分析。数值结果表明:混凝土动态与静态加载下压缩强度尺寸效应规律存在明显差异,在动态压缩强度尺寸效应规律中,存在一个临界应变率(约为1 s-1),即:低于临界应变率时,应变率增大时,压缩强度随试件尺寸增大而减小,且尺寸效应逐渐被削弱;达到临界应变率时,混凝土动态压缩强度与尺寸无关,尺寸效应被完全抑制;高于临界应变率时,应变率增大时,压缩强度随试件尺寸增大而增大,尺寸效应逐渐增强。最后对混凝土动态强度尺寸效应的产生机理进行了分析与讨论。

关键词: 混凝土, 动态压缩, 尺寸效应, 细观模拟, 临界应变率

Abstract: The static size effect of concretes has been relatively well addressed, while studies on the dynamic size effect of concretes have not yet generated a unified understanding. The size effect of concrete can be attributed to the inner heterogeneities. Herein the study, a meso-scale simulation method was built to study the dynamic failure and size effect of concrete. Considering the material heterogeneity and strain rate effects of meso-components, concrete was simulated as a three-phase composite composed of aggregate, mortar matrix and interface transition zone at meso-scale. The square concrete specimens with different sizes were built and the dynamic compressive failure and the size effect of concrete under the strain rates from 10-5 s-1 to 200 s-1 were investigated using the meso-scale simulation method. There are obvious differences between static size effect and dynamic size effect in the compressive strength of concrete. There exists a critical strain rate (the critical strain rate is s-1 approximately). When the applied strain rate is less than the critical strain rate, the size effect on the dynamic compressive strength is weakened or suppressed as the strain rate increases. The dynamic compressive strength would be independent of the structural size of the specimen when the applied strain rate reaches the critical strain rate. When the applied strain rate is more than the critical strain rate, the size effect on the dynamic compressive strength is strengthened as the strain rate increases. Finally, based on the simulation results, the mechanism of concrete dynamic size effect was analyzed and discussed.

Key words: concrete, dynamic compression, size effect, meso-scale simulation, critical strain rate

中图分类号: 

  • TU528
[1] Bazant Z P, Planas J. Fracture and size effect in concrete and other quasibrittle materials[M]. CRC Press, 1998:7-15.
[2] Du X, Jin L, Ma G. Meso-element equivalent method for the simulation of macro mechanical properties of concrete[J]. International Journal of Damage Mechanics, 2013, 22(5):617-642.
[3] Du X, Jin L, Ma G. A meso-scale analysis method for the simulation of nonlinear damage and failure behavior of reinforced concrete members[J]. International Journal of Damage Mechanics, 2013, 22(6):878-904.
[4] Weibull W. The phenomenon of rupture in solids[J]. Proceedings of Royal Sweden Institute of Engineering Research, 1939, 153:1-55.
[5] Carpinteri A, Ferro G. Size effects on tensile fracture properties:a unified explanation based on disorder and factuality of concrete microstructure[J]. Materials and Structures, 1994, 27(10):563-571.
[6] 杜修力, 金浏, 李冬. 混凝土与混凝土结构尺寸效应述评:(I)材料层次[J]. 土木工程学报, 2017, 50(9):28-45. Du Xiuli, Jin Liu, Li Dong. A state-of-the-art review on the size effect of concretes and concrete structures:(I) concrete materials[J]. China Civil Engineering Journal, 2017, 50(9):28-45. (in Chinese)
[7] 杜修力, 金浏, 李冬. 混凝土与混凝土结构尺寸效应述评:(II)构件层次[J]. 土木工程学报, 2017, 50(11):24-44. Du Xiuli, Jin Liu, Li Dong. A state-of-the-art review on the size effect of concretes and concrete structures:(II) RC members[J]. China Civil Engineering Journal, 2017, 50(11):24-44. (in Chinese)
[8] Wang X H, Zhang S R, Wang C, et al. Experimental investigation of the size effect of layered roller compacted concrete (RCC) under high-strain-rate loading[J]. Construction and Building Materials, 2018, 165:45-57.
[9] 宁建国, 商霖, 孙远翔. 混凝土材料动态性能的经验公式、强度理论与唯象本构模型[J]. 力学进展, 2006, 36(3):389-405. Ning Jianguo, Shang Lin, Sun Yuanxiang. The developments of dynamic constitutive behavior of concrete[J]. Advances in Mechanics, 2006, 36(3):389-405. (in Chinese)
[10] Li Q M, Meng H. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test[J]. International Journal of Solids and Structures, 2003, 40:343-360.
[11] Hao Y, Hao H, Jiang G P, et al. Experimental confirmation of some factors influencing dynamic concrete compressive strengths in high-speed impact tests[J]. Cement and Concrete Research, 2013, 52:63-70.
[12] Hao Y, Hao H, Li Z X. Influence of end friction confinement on impact tests of concrete material at high strain rate[J]. International Journal of Impact Engineering, 2013, 60:82-106.
[13] Hao Y, Hao H, Li Z X. Numerical analysis of lateral inertial confinement effects on impact test of concrete compressive material properties[J]. International Journal of Protective Structures, 2010, 1(1):145-167.
[14] Hao H, Hao Y, Li J, et al. Review of the current practices in blast-resistant analysis and design of concrete structures[J]. Advances in Structural Engineering, 2016, 19(8):1193-1223.
[15] Bindiganavile V, Banthia N. Size effects and the dynamic response of plain concrete[J]. ASCE Journal of Materials in Civil Engineering, 2006, 18(4):485-491.
[16] Krauthammer T, Elfahal M M, Lim J, et al. Size effect for high strength concrete cylinders subjected to axial impact[J]. International Journal of Impact Engineering, 2003, 28(9):1001-1016.
[17] Elfahal M M, Krauthammer T. Dynamic size effect in normal-and high-strength concrete cylinders[J]. ACI Materials Journal, 2005, 102(2):77-85.
[18] Elfahal M M, Krauthammer T, Ohno T, et al. Size effect for normal strength concrete cylinders subjected to axial impact[J]. International Journal of Impact Engineering, 2005, 31(4):461-481.
[19] 胡伟华, 邹荣华, 彭刚, 等. 不同应变速率下混凝土吸能特性及尺寸效应的研究[J]. 长江科学院院报, 2015, 32(5):132-136. Hu Weihua, Zou Ronghua, Peng Gang, et al. Energy absorption characteristics and size effect of concrete under different strain rates[J]. Journal of Yangtze River Scientific Research Institute, 2015, 32(5):132-136.
[20] Li M, Hao H, Shi Y, et al. Specimen shape and size effects on the concrete compressive strength under static and dynamic tests[J]. Construction and Building Materials, 2018, 161:94-93.
[21] Zhou X Q, Hao H. Modelling of compressive behavior of concrete-like materials at high strain rate[J]. International Journal of Solids and Structures, 2008, 45(17):4648-4661.
[22] Snozzi L, Caballero A, Molinari J F. Influence of the meso-structure in dynamic fracture simulation of concrete under tensile loading[J]. Cement and Concrete Research, 2011, 41(11):1130-1142.
[23] Pedersen R R, Simone A, Sluys L J. Mesoscopic modeling and simulation of the dynamic tensile behavior of concrete[J]. Cement and Concrete Research, 2013, 50:74-87.
[24] Du Xiuli, Jin Liu, Ma Guowei. Numerical simulation of dynamic tensile-failure of concrete at meso-scale[J]. International Journal of Impact Engineering, 2014, 66(4):5-17.
[25] Jin L, Xu C, Han Y, et al. Effect of end friction on the dynamic compressive mechanical behavior of concrete under medium and low strain rates[J]. Shock and Vibration, 2016, 2016:1-20.
[26] 金浏, 杜修力. 加载速率对混凝土拉伸破坏行为影响的细观数值分析[J]. 工程力学, 2015, 32(8):42-49. Jin Liu, Du Xiuli. Meso-scale numerical analysis of the effect of loading rate on the tensile failure behavior of concrete[J]. Engineering Mechanics, 2015, 32(8):42-49. (in Chinese)
[27] 杜敏, 金浏, 李冬, 等骨料粒径对混凝土劈拉性能及尺寸效应影响的细观数值研究[J]. 工程力学, 2017, 34(9):54-63. Du Min, Jin Liu, Li Dong, et al. Mesoscopic simulation study of the influence of aggregate size on mechanical properties and specimen size effect of concrete subjected to splitting tensile loading[J]. Engineering Mechanics, 2017, 34(9):54-63. (in Chinese)
[28] Man H K, van Mier J G M. Size effect on strength and fracture energy for numerical concrete with realistic aggregate shapes[J]. International Journal of Fracture, 2008, 154(1/2):61-72.
[29] Grassl P, Gregoire D. Meso-scale modelling of the size effect on the fracture process zone of concrete[J]. International Journal of Solids and Structures, 2012, 49(13):1818-1827.
[30] Wang X, Yang Z, Jivkov A P. Monte Carlo simulations of mesoscale fracture of concrete with random aggregates and pores:a size effect study[J]. Construction and Building Materials, 2015, 80:262-272.
[31] Lee J, Fenves G L. Plastic-damage model for cyclic loading of concrete structures[J]. ASCE Journal of Engineering Mechanics, 1998, 124(8):892-900.
[32] Lubliner J, Oliver J, Oller S. A plastic-damage model for concrete[J]. Solids and Structures, 1989, 25(3):299-326.
[33] Dilger W H, Koch R, Kowalczyk R. Ductility of plain and confined concrete under different strain rates[J]. ACI Journal, 1984, 81(1):73-81.
[34] Bischoff P H, Perry S H. Compressive behavior of concrete at high strain rates[J]. Materials and Structures, 1991, 144(24):425-450.
[35] Cusatis G. Strain rate effects on concrete behavior[J]. International Journal of Impact Engineering, 2011, 38(4):162-170.
[36] Comite Euro-International D B. CEB-FIP model code 1990[S]. Trowbridge, Wiltshire, UK:Redwood Books, 1993.
[37] Malvar L J, Ross C A. Review of strain rate effects for concrete in tension[J]. ACI Materials Journal, 1998, 95(6):735-739.
[38] Bažant Z P, Gu W H, Faber K T. Softening reversal and other effects of a change in loading rate on fracture of concrete[J]. ACI Materials Journal, 1995, 92(1):3-9.
[39] Bažant Z P, Caner F C, Adley M D, et al. Fracturing rate effect and creep in micro-plane model for dynamics[J]. ASCE Journal of Engineering Mechanics, 2000, 126(9):962-970.
[40] Garboczi E J, Bentz D P. Digital simulation of the aggregate-cement paste interfacial zone in concrete[J]. Journal of Materials Research, 1991, 6(2):196-201.
[41] Kim S M, Abu Al-Rub R K. Meso-scale computational modeling of the plastic-damage response of cementitious composites[J]. Cement and Concrete Research, 2011, 41(3):339-358.
[1] 杨志坚, 韩嘉明, 雷岳强, 赵海龙, 胡嘉飞. 预应力混凝土管桩与承台连接节点抗震性能研究[J]. 工程力学, 2019, 36(S1): 248-254.
[2] 代鹏, 杨璐, 卫璇, 周宇航. 不锈钢管混凝土短柱轴压承载力试验研究[J]. 工程力学, 2019, 36(S1): 298-305.
[3] 隋䶮, 薛建阳, 董金爽, 张锡成, 谢启芳, 白福玉. 附设粘滞阻尼器的混凝土仿古建筑梁-柱节点恢复力模型试验研究[J]. 工程力学, 2019, 36(S1): 44-53.
[4] 杜春波, 王涛, 郄毅. 交替协调子结构混合试验方法研究[J]. 工程力学, 2019, 36(S1): 54-58.
[5] 林德慧, 陈以一. 部分填充钢-混凝土组合柱整体稳定分析[J]. 工程力学, 2019, 36(S1): 71-77,85.
[6] 刘兴喜, 徐荣桥. FRP加固混凝土梁粘结层剪应力分析[J]. 工程力学, 2019, 36(S1): 149-153.
[7] 关少钰, 白涌滔, 刘卫辉, 李银胜, 王伟. 基于统一强度理论的高强钢管混凝土柱压弯屈服准则[J]. 工程力学, 2019, 36(S1): 170-174,183.
[8] 徐金金, 杨树桐, 刘治宁. 碱激发矿粉海水海砂混凝土与CFRP筋粘结性能研究[J]. 工程力学, 2019, 36(S1): 175-183.
[9] 田稳苓, 温晓东, 彭佳斌, 徐丽丽, 李子祥. 新型泡沫混凝土轻钢龙骨复合墙体抗剪承载力计算方法研究[J]. 工程力学, 2019, 36(9): 143-153.
[10] 覃茜, 徐千军. 成层混凝土的剪切强度和Ⅱ型断裂韧度[J]. 工程力学, 2019, 36(9): 188-196.
[11] 邓明科, 马福栋, 叶旺, 殷鹏飞. 局部采用高延性混凝土装配式框架梁-柱节点抗震性能试验研究[J]. 工程力学, 2019, 36(9): 68-78.
[12] 梁兴文, 汪萍, 徐明雪, 于婧, 李林. 免拆UHPC模板RC梁受弯性能试验及承载力分析[J]. 工程力学, 2019, 36(9): 95-107.
[13] 徐世烺, 陈超, 李庆华, 赵昕. 超高韧性水泥基复合材料动态压缩力学性能的数值模拟研究[J]. 工程力学, 2019, 36(9): 50-59.
[14] 王威, 赵春雷, 苏三庆, 任坦, 刘格炜, 董晨阳. 带栓钉波形钢板混凝土组合构件粘结滑移性能与承载力试验研究[J]. 工程力学, 2019, 36(9): 108-119.
[15] 李聪, 陈宝春, 黄卿维. 超高性能混凝土圆环约束收缩试验研究[J]. 工程力学, 2019, 36(8): 49-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李元齐;田村幸雄;沈祖炎. 单层网壳结构等效静风荷载分布估计[J]. 工程力学, 2006, 23(1): 57 -61 .
[2] 王立成;日和田·希与志. 基于统一强度理论的轻骨料混凝土多轴强度准则[J]. 工程力学, 2006, 23(5): 125 -131 .
[3] 程选生;杜永峰;李 慧. 四边简支钢筋混凝土矩形薄板的热屈曲[J]. 工程力学, 2007, 24(4): 0 -006, .
[4] 巨玉文;&#;李克非;韩建国. 混凝土早龄拉伸徐变的试验与理论研究[J]. 工程力学, 2009, 26(9): 43 -049 .
[5] 李庆华;徐世烺. 超高韧性水泥基复合材料在受弯构件中应用研究[J]. 工程力学, 2010, 27(增刊Ⅱ): 235 -239 .
[6] 曾永革;李传习. 节段施工体外预应力混凝土梁弯曲性能研究[J]. 工程力学, 2011, 28(1): 110 -115 .
[7] 申红侠;顾 强. 钢梁-钢筋混凝土柱梁柱节点的设计模型[J]. 工程力学, 2011, 28(2): 86 -093 .
[8] 沈国辉;余关鹏;孙炳楠;楼文娟;李庆祥;杨仕超. 模型表面粗糙度对冷却塔风荷载的影响[J]. 工程力学, 2011, 28(3): 86 -093 .
[9] 沈蒲生. 依次放松约束结点的子结构法[J]. 工程力学, 1984, 1(1): 81 -92 .
[10] 陈璞;李原能;袁明武. Ritz向量直接迭加法及其在微型机上的实现[J]. 工程力学, 1984, 1(1): 93 -98 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日