工程力学 ›› 2019, Vol. 36 ›› Issue (11): 50-61.doi: 10.6052/j.issn.1000-4750.2018.06.0363
金浏1, 余文轩1, 杜修力1, 张帅1, 杨旺贤1, 李冬1,2
JIN Liu1, YU Wen-xuan1, DU Xiu-li1, ZHANG Shuai1, YANG Wang-xian1, LI Dong1,2
摘要: 在混凝土静态破坏尺寸效应方面开展的研究已经较为完善,而在动态破坏尺寸效应方面的研究还远没有形成一个统一的认知。混凝土尺寸效应根源于内部组成的非均质性,从细观角度出发,考虑材料非均质及细观组分的应变率效应,将混凝土看作由骨料、砂浆及界面过渡区组成的三相复合材料,建立了混凝土动态破坏行为研究的细观数值分析方法,对不同应变率(1×10-5 s-1~2×102 s-1)及不同尺寸方形混凝土试件单轴压缩破坏行为进行模拟与分析。数值结果表明:混凝土动态与静态加载下压缩强度尺寸效应规律存在明显差异,在动态压缩强度尺寸效应规律中,存在一个临界应变率(约为1 s-1),即:低于临界应变率时,应变率增大时,压缩强度随试件尺寸增大而减小,且尺寸效应逐渐被削弱;达到临界应变率时,混凝土动态压缩强度与尺寸无关,尺寸效应被完全抑制;高于临界应变率时,应变率增大时,压缩强度随试件尺寸增大而增大,尺寸效应逐渐增强。最后对混凝土动态强度尺寸效应的产生机理进行了分析与讨论。
中图分类号:
[1] Bazant Z P, Planas J. Fracture and size effect in concrete and other quasibrittle materials[M]. CRC Press, 1998:7-15. [2] Du X, Jin L, Ma G. Meso-element equivalent method for the simulation of macro mechanical properties of concrete[J]. International Journal of Damage Mechanics, 2013, 22(5):617-642. [3] Du X, Jin L, Ma G. A meso-scale analysis method for the simulation of nonlinear damage and failure behavior of reinforced concrete members[J]. International Journal of Damage Mechanics, 2013, 22(6):878-904. [4] Weibull W. The phenomenon of rupture in solids[J]. Proceedings of Royal Sweden Institute of Engineering Research, 1939, 153:1-55. [5] Carpinteri A, Ferro G. Size effects on tensile fracture properties:a unified explanation based on disorder and factuality of concrete microstructure[J]. Materials and Structures, 1994, 27(10):563-571. [6] 杜修力, 金浏, 李冬. 混凝土与混凝土结构尺寸效应述评:(I)材料层次[J]. 土木工程学报, 2017, 50(9):28-45. Du Xiuli, Jin Liu, Li Dong. A state-of-the-art review on the size effect of concretes and concrete structures:(I) concrete materials[J]. China Civil Engineering Journal, 2017, 50(9):28-45. (in Chinese) [7] 杜修力, 金浏, 李冬. 混凝土与混凝土结构尺寸效应述评:(II)构件层次[J]. 土木工程学报, 2017, 50(11):24-44. Du Xiuli, Jin Liu, Li Dong. A state-of-the-art review on the size effect of concretes and concrete structures:(II) RC members[J]. China Civil Engineering Journal, 2017, 50(11):24-44. (in Chinese) [8] Wang X H, Zhang S R, Wang C, et al. Experimental investigation of the size effect of layered roller compacted concrete (RCC) under high-strain-rate loading[J]. Construction and Building Materials, 2018, 165:45-57. [9] 宁建国, 商霖, 孙远翔. 混凝土材料动态性能的经验公式、强度理论与唯象本构模型[J]. 力学进展, 2006, 36(3):389-405. Ning Jianguo, Shang Lin, Sun Yuanxiang. The developments of dynamic constitutive behavior of concrete[J]. Advances in Mechanics, 2006, 36(3):389-405. (in Chinese) [10] Li Q M, Meng H. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test[J]. International Journal of Solids and Structures, 2003, 40:343-360. [11] Hao Y, Hao H, Jiang G P, et al. Experimental confirmation of some factors influencing dynamic concrete compressive strengths in high-speed impact tests[J]. Cement and Concrete Research, 2013, 52:63-70. [12] Hao Y, Hao H, Li Z X. Influence of end friction confinement on impact tests of concrete material at high strain rate[J]. International Journal of Impact Engineering, 2013, 60:82-106. [13] Hao Y, Hao H, Li Z X. Numerical analysis of lateral inertial confinement effects on impact test of concrete compressive material properties[J]. International Journal of Protective Structures, 2010, 1(1):145-167. [14] Hao H, Hao Y, Li J, et al. Review of the current practices in blast-resistant analysis and design of concrete structures[J]. Advances in Structural Engineering, 2016, 19(8):1193-1223. [15] Bindiganavile V, Banthia N. Size effects and the dynamic response of plain concrete[J]. ASCE Journal of Materials in Civil Engineering, 2006, 18(4):485-491. [16] Krauthammer T, Elfahal M M, Lim J, et al. Size effect for high strength concrete cylinders subjected to axial impact[J]. International Journal of Impact Engineering, 2003, 28(9):1001-1016. [17] Elfahal M M, Krauthammer T. Dynamic size effect in normal-and high-strength concrete cylinders[J]. ACI Materials Journal, 2005, 102(2):77-85. [18] Elfahal M M, Krauthammer T, Ohno T, et al. Size effect for normal strength concrete cylinders subjected to axial impact[J]. International Journal of Impact Engineering, 2005, 31(4):461-481. [19] 胡伟华, 邹荣华, 彭刚, 等. 不同应变速率下混凝土吸能特性及尺寸效应的研究[J]. 长江科学院院报, 2015, 32(5):132-136. Hu Weihua, Zou Ronghua, Peng Gang, et al. Energy absorption characteristics and size effect of concrete under different strain rates[J]. Journal of Yangtze River Scientific Research Institute, 2015, 32(5):132-136. [20] Li M, Hao H, Shi Y, et al. Specimen shape and size effects on the concrete compressive strength under static and dynamic tests[J]. Construction and Building Materials, 2018, 161:94-93. [21] Zhou X Q, Hao H. Modelling of compressive behavior of concrete-like materials at high strain rate[J]. International Journal of Solids and Structures, 2008, 45(17):4648-4661. [22] Snozzi L, Caballero A, Molinari J F. Influence of the meso-structure in dynamic fracture simulation of concrete under tensile loading[J]. Cement and Concrete Research, 2011, 41(11):1130-1142. [23] Pedersen R R, Simone A, Sluys L J. Mesoscopic modeling and simulation of the dynamic tensile behavior of concrete[J]. Cement and Concrete Research, 2013, 50:74-87. [24] Du Xiuli, Jin Liu, Ma Guowei. Numerical simulation of dynamic tensile-failure of concrete at meso-scale[J]. International Journal of Impact Engineering, 2014, 66(4):5-17. [25] Jin L, Xu C, Han Y, et al. Effect of end friction on the dynamic compressive mechanical behavior of concrete under medium and low strain rates[J]. Shock and Vibration, 2016, 2016:1-20. [26] 金浏, 杜修力. 加载速率对混凝土拉伸破坏行为影响的细观数值分析[J]. 工程力学, 2015, 32(8):42-49. Jin Liu, Du Xiuli. Meso-scale numerical analysis of the effect of loading rate on the tensile failure behavior of concrete[J]. Engineering Mechanics, 2015, 32(8):42-49. (in Chinese) [27] 杜敏, 金浏, 李冬, 等骨料粒径对混凝土劈拉性能及尺寸效应影响的细观数值研究[J]. 工程力学, 2017, 34(9):54-63. Du Min, Jin Liu, Li Dong, et al. Mesoscopic simulation study of the influence of aggregate size on mechanical properties and specimen size effect of concrete subjected to splitting tensile loading[J]. Engineering Mechanics, 2017, 34(9):54-63. (in Chinese) [28] Man H K, van Mier J G M. Size effect on strength and fracture energy for numerical concrete with realistic aggregate shapes[J]. International Journal of Fracture, 2008, 154(1/2):61-72. [29] Grassl P, Gregoire D. Meso-scale modelling of the size effect on the fracture process zone of concrete[J]. International Journal of Solids and Structures, 2012, 49(13):1818-1827. [30] Wang X, Yang Z, Jivkov A P. Monte Carlo simulations of mesoscale fracture of concrete with random aggregates and pores:a size effect study[J]. Construction and Building Materials, 2015, 80:262-272. [31] Lee J, Fenves G L. Plastic-damage model for cyclic loading of concrete structures[J]. ASCE Journal of Engineering Mechanics, 1998, 124(8):892-900. [32] Lubliner J, Oliver J, Oller S. A plastic-damage model for concrete[J]. Solids and Structures, 1989, 25(3):299-326. [33] Dilger W H, Koch R, Kowalczyk R. Ductility of plain and confined concrete under different strain rates[J]. ACI Journal, 1984, 81(1):73-81. [34] Bischoff P H, Perry S H. Compressive behavior of concrete at high strain rates[J]. Materials and Structures, 1991, 144(24):425-450. [35] Cusatis G. Strain rate effects on concrete behavior[J]. International Journal of Impact Engineering, 2011, 38(4):162-170. [36] Comite Euro-International D B. CEB-FIP model code 1990[S]. Trowbridge, Wiltshire, UK:Redwood Books, 1993. [37] Malvar L J, Ross C A. Review of strain rate effects for concrete in tension[J]. ACI Materials Journal, 1998, 95(6):735-739. [38] Bažant Z P, Gu W H, Faber K T. Softening reversal and other effects of a change in loading rate on fracture of concrete[J]. ACI Materials Journal, 1995, 92(1):3-9. [39] Bažant Z P, Caner F C, Adley M D, et al. Fracturing rate effect and creep in micro-plane model for dynamics[J]. ASCE Journal of Engineering Mechanics, 2000, 126(9):962-970. [40] Garboczi E J, Bentz D P. Digital simulation of the aggregate-cement paste interfacial zone in concrete[J]. Journal of Materials Research, 1991, 6(2):196-201. [41] Kim S M, Abu Al-Rub R K. Meso-scale computational modeling of the plastic-damage response of cementitious composites[J]. Cement and Concrete Research, 2011, 41(3):339-358. |
[1] | 杨志坚, 韩嘉明, 雷岳强, 赵海龙, 胡嘉飞. 预应力混凝土管桩与承台连接节点抗震性能研究[J]. 工程力学, 2019, 36(S1): 248-254. |
[2] | 代鹏, 杨璐, 卫璇, 周宇航. 不锈钢管混凝土短柱轴压承载力试验研究[J]. 工程力学, 2019, 36(S1): 298-305. |
[3] | 隋䶮, 薛建阳, 董金爽, 张锡成, 谢启芳, 白福玉. 附设粘滞阻尼器的混凝土仿古建筑梁-柱节点恢复力模型试验研究[J]. 工程力学, 2019, 36(S1): 44-53. |
[4] | 杜春波, 王涛, 郄毅. 交替协调子结构混合试验方法研究[J]. 工程力学, 2019, 36(S1): 54-58. |
[5] | 林德慧, 陈以一. 部分填充钢-混凝土组合柱整体稳定分析[J]. 工程力学, 2019, 36(S1): 71-77,85. |
[6] | 刘兴喜, 徐荣桥. FRP加固混凝土梁粘结层剪应力分析[J]. 工程力学, 2019, 36(S1): 149-153. |
[7] | 关少钰, 白涌滔, 刘卫辉, 李银胜, 王伟. 基于统一强度理论的高强钢管混凝土柱压弯屈服准则[J]. 工程力学, 2019, 36(S1): 170-174,183. |
[8] | 徐金金, 杨树桐, 刘治宁. 碱激发矿粉海水海砂混凝土与CFRP筋粘结性能研究[J]. 工程力学, 2019, 36(S1): 175-183. |
[9] | 田稳苓, 温晓东, 彭佳斌, 徐丽丽, 李子祥. 新型泡沫混凝土轻钢龙骨复合墙体抗剪承载力计算方法研究[J]. 工程力学, 2019, 36(9): 143-153. |
[10] | 覃茜, 徐千军. 成层混凝土的剪切强度和Ⅱ型断裂韧度[J]. 工程力学, 2019, 36(9): 188-196. |
[11] | 邓明科, 马福栋, 叶旺, 殷鹏飞. 局部采用高延性混凝土装配式框架梁-柱节点抗震性能试验研究[J]. 工程力学, 2019, 36(9): 68-78. |
[12] | 梁兴文, 汪萍, 徐明雪, 于婧, 李林. 免拆UHPC模板RC梁受弯性能试验及承载力分析[J]. 工程力学, 2019, 36(9): 95-107. |
[13] | 徐世烺, 陈超, 李庆华, 赵昕. 超高韧性水泥基复合材料动态压缩力学性能的数值模拟研究[J]. 工程力学, 2019, 36(9): 50-59. |
[14] | 王威, 赵春雷, 苏三庆, 任坦, 刘格炜, 董晨阳. 带栓钉波形钢板混凝土组合构件粘结滑移性能与承载力试验研究[J]. 工程力学, 2019, 36(9): 108-119. |
[15] | 李聪, 陈宝春, 黄卿维. 超高性能混凝土圆环约束收缩试验研究[J]. 工程力学, 2019, 36(8): 49-58. |
|
近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:
1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。
2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。
感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!
《工程力学》杂志社
2018年11月15日