工程力学 ›› 2019, Vol. 36 ›› Issue (7): 216-226.doi: 10.6052/j.issn.1000-4750.2018.06.0362

• 土木工程学科 • 上一篇    下一篇

基于Bayesian理论的弯剪破坏钢筋混凝土柱变形能力概率模型

马颖1, 王东升2, 解河海3, 白卫峰1   

  1. 1. 华北水利水电大学水利学院, 河南, 郑州 450045;
    2. 河北工业大学土木与交通学院, 天津 300401;
    3. 珠江水利科学研究院, 广州 510611
  • 收稿日期:2018-06-30 修回日期:2018-10-12 出版日期:2019-07-06 发布日期:2019-07-06
  • 通讯作者: 王东升(1974-),男,内蒙古人,教授,博士,博导,主要从事桥梁及结构工程抗震研究(E-mail:dswang@hebut.edu.cn). E-mail:dswang@hebut.edu.cn
  • 作者简介:马颖(1982-),女,河南人,副教授,博士,硕导,主要从事结构工程抗震研究(E-mail:maying198208@163.com);解河海(1978-),男,河南人,高工,博士,硕导,主要从事防灾减灾研究(E-mail:xiehehai@gmail.com);白卫峰(1982-),男,河南人,副教授,博士后,硕导,主要从事混凝土损伤研究(E-mail:yf9906@163.com).
  • 基金资助:
    国家自然科学基金青年基金项目(51408223);国家自然科学基金项目(51679092)

Probabilistic deformation capacity models of reinforced concrete columns failed in flexural-shear based on Bayesian theory

MA Ying1, WANG Dong-sheng2, XIE He-hai3, BAI Wei-feng1   

  1. 1. School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou, He'nan 450045, China;
    2. School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China;
    3. Pearl River Hydraulic Research Institute, Guangzhou 510611, China
  • Received:2018-06-30 Revised:2018-10-12 Online:2019-07-06 Published:2019-07-06

摘要: 为了准确预测地震作用下弯剪破坏钢筋混凝土(RC)柱的变形能力,基于Bayesian理论提出了一种建立柱类构件变形能力概率模型的方法。首先对已有RC柱变形能力公式进行评价并选作先验模型,再借助美国PEER柱抗震性能试验数据库中发生弯剪破坏的20根矩形截面RC墩柱的拟静力试验数据作为客观认识,应用Bayesian参数估计方法综合这两类信息进行推断,修正先验模型的偏差从而建立反复荷载作用下弯剪破坏RC柱变形能力的概率模型;采用Bayesian方法剔除影响修正效果不显著的因素以获得模型简化,达到对先验模型的动态更新。最后,讨论了不同形式修正项对修正效果的影响。结果表明,Bayesian方法既继承了先验信息的完备性,又利用了试验数据的准确性,建议的概率模型较已有公式能够更准确地预测弯剪破坏RC柱的变形能力,从而为RC柱抗震设计或评估中考虑能力不确定性提供了便利。

关键词: 钢筋混凝土柱, 弯剪破坏, 极限位移角, 概率模型, 贝叶斯理论

Abstract: In order to predict the deformation capacity of reinforced concrete columns (RC) failed in flexural-shear under seismic loading, a methodology to construct probabilistic deformation capacity models of columns is developed based on Bayesian theory. The prior models are proposed based on evaluating the biases of base deterministic models. And, the quasi-static test data of 20 rectangular RC columns failed in flexural-shear were collected from PEER-Structural Performance Database and used as objective knowledge. Two types of information, epistemic information and experimental information, are synthesized by Bayesian estimation method and inferred to update prior models. The probabilistic models for the deformation capacity of RC columns failed in flexural-shear under cyclic loading are constructed. Subsequently, the probabilistic models are simplified by using the stepwise procedure to delete unimportant terms and the dynamic updating of prior models is achieved. Then, the effect of different correction items is discussed. The results show that the approach inherits the completeness of prior models and the accuracy of experimental data information. Therefore, it could more accurately predict the deformation capacity of RC columns failed in flexural-shear, which is convenient to consider the capacity uncertainty in the aseismic design or in the evaluation of RC column.

Key words: reinforced concrete column, flexural-shear failure, ultimate drifts, probabilistic model, Bayesian theory

中图分类号: 

  • TU375.3
[1] Hashimoto S, Fujino Y, Abe M. Damage analysis of Hanshin expressway viaducts during 1995 Kobe earthquake. Ⅱ:damage mode of single reinforced concrete piers[J]. Journal of Bridge Engineering, ASCE, 2005, 10(1):54-60.
[2] 王东升, 郭迅, 孙治国, 等. 汶川大地震公路桥梁震害初步调查[J]. 地震工程与工程振动, 2009, 29(3):84-94. Wang Dongsheng, Guo Xun, Sun Zhiguo, et al. Damage to highway bridges during Wenchuan Earthquake[J]. Earthquake Engineering and Engineering Vibration, 2009, 29(3):84-94. (in Chinese)
[3] ASCE/SEI 41-06. Seismic rehabilitation of existing buildings[S]. American Society of Civil Engineers, Reston, Virginia, 2007.
[4] European Standard EN 1998-3, Eurocode 8:design of structures for earthquake resistance-part 3:assessment and retrofitting of buildings[S]. Comite Europeen de Normalisation, Brussels, 2005.
[5] Paultre P, Legeron F. Confinement reinforcement design for reinforced concrete columns[J]. Journal of Structural Engineering, ASCE, 2008, 134(5):738-749.
[6] 禚一, 李忠献. 钢筋混凝土纤维梁柱单元实用模拟平台[J]. 工程力学, 2011, 28(1):102-108, 127. Zhuo Yi, Li Zhongxian. A practical simulation platfoem of reinforced concrete fiber beam-column element[J]. Engineering Mechanics, 2011, 28(1):102-108, 127. (in Chinese)
[7] 孙治国, 陈灿, 司炳君, 等. 考虑非线性剪切效应的RC桥墩抗震分析模型[J]. 工程力学, 2015, 32(5):28-36, 50. Sun Zhiguo, Chen Can, Si Bingjun, et al. Seismic analysis model considering nonlinear shear effect for RC bridge piers[J]. Engineering Mechanics, 2015, 32(5):28-36, 50. (in Chinese)
[8] Ma Y, Gong J X. Seismic failure modes and deformation capacity of reinforced concrete columns under cyclic loads[J]. Periodica Polytechnica-Civil Engineering, 2018, 62(1):80-91.
[9] Elwood K J, Moehle J P. Drift capacity of reinforced concrete columns with light transverse reinforcement[J]. Earthquake Spectra, 2005, 21(1):71-89.
[10] 熊朝晖, 潘德恩. 钢筋混凝土框架柱侧向变形能力的研究[J]. 地震工程与工程振动, 2001, 21(2):103-108. Xiong Zhaohui, Pan Deen. Study on lateral deformability of reinforced concrete frame columns[J]. Earthquake Engineering and Engineering Vibration, 2001, 21(2):103-108. (in Chinese)
[11] 马颖, 孙治国, 王东升, 等. 基于变形能力的钢筋混凝土桥墩约束箍筋用量评价[J]. 桥梁建设, 2014, 44(6):57-62. Ma Ying, Sun Zhiguo, Wang Dongsheng, et al. Evaluation of amounts of confining stirrups used for RC bridge columns based on deformation capacity[J]. Bridge Construction, 2014, 44(6):57-62. (in Chinese)
[12] Choe D E, Gardoni P, Rosowsky D. Closed-form fragility estimates, parameter sensitivity, and Bayesian updating for RC columns[J]. Journal of Engineering Mechanics, ASCE, 2007, 133(7):833-843.
[13] Tabandeh A, Gardoni P. Probabilistic capacity models and fragility estimates for RC columns retrofitted with FRP composites[J]. Engineering Structures, 2014, 74(1):13-22.
[14] 余波, 陈冰, 吴然立. 剪切型钢筋混凝土柱抗剪承载力计算的概率模型[J]. 工程力学, 2017, 34(7):136-145. Yu Bo, Chen Bing, Wu Ranli. Probabilistic model for shear strength of shear-critical reinforced concrete columns[J]. Engineering Mechanics, 2017, 34(7):136-145. (in Chinese)
[15] 张家瑞, 魏凯, 秦顺全. 基于贝叶斯更新的深水桥墩波浪动力响应概率模型[J]. 工程力学, 2018, 35(8):138-143, 171. Zhang Jiarui, Wei Kai, Qin Shunquan. A Bayesian updating based probabilistic model for the dynamic response of deepwater bridge piers under wave loading[J]. Engineering Mechanics, 2018, 35(8):138-143, 171. (in Chinese)
[16] Gardoni P, Kiureghian A D, Mosalam K M. Probabilistic capacity models and fragility estimates for reinforced concrete columns based on experimental observations[J]. Journal of Engineering Mechanics, ASCE, 2002, 128(10):1024-1038.
[17] Sasani M. Life-safety and near-collapse capacity models for seismic shear behavior of reinforced concrete columns[J].ACI Structural Journal, 2007, 104(1):30-38.
[18] Zhu L. Probabilistic drift capacity models for reinforced concrete columns[D]. Vancouver:University of British Columbia, 2005.
[19] Zhu L, Elwood K J, Haukaas T. Classification and seismic safety evaluation of existing reinforced concrete columns[J]. Journal of Structural Engineering, ASCE, 2007, 133(9):1316-1330.
[20] 卓卫东, 曾武华. 矩形RC桥墩变形能力概率模型[J]. 工程力学, 2015, 32(1):57-63. Zhuo Weidong, Zeng Wuhua. Probabilistic deformation capacity for rectangular bridge columns[J]. Engineering Mechanics, 2015, 32(1):57-63. (in Chinese)
[21] John A Rice, 田金方. 数理统计与数据分析[M]. 北京:机械工业出版社, 2016:97-206. John A Rice, Tian Jinfang. Mathematical statistics and data analysis[M]. Beijing:China Machine Press, 2016:97-206. (in Chinese)
[22] Rao C R, Toutenburg H. Linear models:least squares and alternatives[M]. New York:Springer, 1997.
[23] Box G E P, Tiao G C. Bayesian inference in statistical analysis[M]. London:Addison-Wesley, 1992.
[24] 王东升, 司炳君, 孙治国, 等. 地震作用下钢筋混凝土桥墩塑性铰区抗剪强度试验[J]. 中国公路学报, 2011, 24(2):34-41. Wang Dongsheng, Si Bingjun, Sun Zhiguo, et al. Experiment on shear strength of reinforced concrete bridge column in plastic hinge zone under seismic effect[J]. China Journal of Highway and Transport, 2011, 24(2):34-41. (in Chinese)
[25] 孙治国, 王东升, 杜修力, 等. 钢筋混凝土桥墩塑性铰区约束箍筋用量研究[J]. 中国公路学报, 2010, 23(3):48-57. Sun Zhiguo, Wang Dongsheng, Du Xiuli, et al. Research on amount of confining reinforcement in potential plastic hinge regions of RC bridge columns[J]. China Journal of Highway and Transport, 2010, 23(3):48-57. (in Chinese)
[26] 贡金鑫, 魏巍巍, 胡家顺. 中美欧混凝土结构设计[M]. 北京:中国建筑工业出版社, 2007:74-77. Gong Jinxin, Wei Weiwei, Hu Jiashun. Concrete structure design in China USA and Europe[M]. Bei Jing:China Architecture & Building Press, 2007:74-77. (in Chinese)
[27] Zhang Q, Gong J X, Ma Y. Seismic shear strength and deformation of RC columns failed in flexural shear[J]. Magazine of Concrete Research, 2014, 66(5):234-248.
[1] 张艺欣, 郑山锁, 裴培, 李磊, 秦卿, 董立国. 钢筋混凝土柱冻融损伤模型研究[J]. 工程力学, 2019, 36(2): 78-86.
[2] 余波, 陶伯雄, 刘圣宾. 一种箍筋约束混凝土峰值应力的概率模型[J]. 工程力学, 2018, 35(9): 135-144.
[3] 张家瑞, 魏凯, 秦顺全. 基于贝叶斯更新的深水桥墩波浪动力响应概率模型[J]. 工程力学, 2018, 35(8): 138-143,171.
[4] 余波, 陈冰, 唐睿楷. 钢筋混凝土梁抗剪承载力计算的概率模型[J]. 工程力学, 2018, 35(5): 170-179.
[5] 邓明科, 张阳玺, 胡红波. 高延性混凝土加固钢筋混凝土柱抗剪承载力计算[J]. 工程力学, 2018, 35(3): 159-166.
[6] 刘子珅, 杨红, 张吉庆. 基于横向挠度的钢筋屈曲状态判断方法研究[J]. 工程力学, 2018, 35(2): 144-152.
[7] 余波, 陈冰. 锈蚀钢筋混凝土梁抗剪承载力计算的概率模型[J]. 工程力学, 2018, 35(11): 115-124.
[8] 李义柱, 曹双寅, 许鹏杰, 倪向勇. 600MPa级钢筋混凝土柱抗震性能试验研究[J]. 工程力学, 2018, 35(11): 181-189.
[9] 余波, 陈冰, 吴然立. 剪切型钢筋混凝土柱抗剪承载力计算的概率模型[J]. 工程力学, 2017, 34(7): 136-145.
[10] 李冬, 金浏, 杜修力. 轴压加载下高强钢筋混凝土柱尺寸效应试验研究[J]. 工程力学, 2017, 34(4): 49-56,71.
[11] 余波, 李长晋, 吴然立. 钢筋混凝土柱的非对称恢复力模型与参数识别[J]. 工程力学, 2017, 34(2): 153-161.
[12] 苏俊省, 王君杰, 宋彦臣, 董正方, 高昊. 钢筋混凝土柱纵筋屈曲长度简化计算模型[J]. 工程力学, 2017, 34(2): 162-170.
[13] 陈旭, 周东华, 廖文远. 钢筋混凝土柱二阶弹塑性计算的图解法[J]. 工程力学, 2016, 33(7): 151-158.
[14] 李冬, 金浏, 杜修力, 卢爱贞. 钢筋混凝土柱偏心受压力学性能的细观数值研究[J]. 工程力学, 2016, 33(7): 65-72.
[15] 朱翔, 陆新征, 杜永峰, 叶列平. 外包钢管加固RC柱抗冲击试验研究[J]. 工程力学, 2016, 33(6): 23-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日