工程力学 ›› 2019, Vol. 36 ›› Issue (7): 197-206,226.doi: 10.6052/j.issn.1000-4750.2018.06.0356

• 土木工程学科 • 上一篇    下一篇

波形钢板剪力墙及组合墙抗剪承载力研究

王威, 刘格炜, 苏三庆, 张龙旭, 任英子, 王鑫   

  1. 西安建筑科技大学土木工程学院, 陕西, 西安 710055
  • 收稿日期:2018-06-30 修回日期:2018-09-08 出版日期:2019-07-06 发布日期:2019-07-06
  • 通讯作者: 王威(1972-),男,陕西岐山人,教授,博士,主要从事结构工程研究(E-mail:wangwgh1972@163.com). E-mail:wangwgh1972@163.com
  • 作者简介:刘格炜(1994-),男,陕西西安人,硕士生,主要从事结构工程研究(E-mail:573478023@163.com);苏三庆(1961-),男,陕西户县人,教授,硕士,主要从事结构工程研究(E-mail:sussq@xauat.com);张龙旭(1992-),男,陕西安康人,硕士生,主要从事结构工程研究(E-mail:771956077@qq.com);任英子(1994-),女,山西运城人,硕士生,主要从事结构工程研究(E-mail:renyingzi5962@163.com);王鑫(1992-),男,河南三门峡人,硕士生,主要从事结构工程研究(E-mail:1311705189@qq.com).
  • 基金资助:
    国家自然科学基金面上项目(51578449,51878548);陕西省自然科学基础研究计划重点项目(2018JZ5013)

Research on the shear bearing capacity of corrugated steel plate shear wall and composite wall

WANG Wei, LIU Ge-wei, SU San-qing, ZHANG Long-xu, REN Ying-zi, WANG Xin   

  1. School of Civil Engineering, Xi'an University of Architecture & Technology, Xi'an, Shaanxi 710055, China
  • Received:2018-06-30 Revised:2018-09-08 Online:2019-07-06 Published:2019-07-06

摘要: 为研究波形钢板剪力墙及其组合墙在水平荷载作用下的破坏形态、受力性能以及抗剪承载力计算方法,设计了4个波形钢板剪力墙及其组合墙试件,进行了低周往复加载试验,并采用ABAQUS有限元软件对24个波形钢板剪力墙及其组合墙模型进行了模拟分析。研究结果表明:波形钢板剪力墙具有较好的变形能力,波形钢板能有效抑制混凝土裂缝的发展,并与混凝土具有很好的界面粘结力,水平波形钢板剪力墙较易在约束边缘构件底部形成塑性铰;波形钢板剪力墙及其组合墙具有较好的承载能力、延性和耗能能力,且承载力下降缓慢; ABAQUS有限元软件能较好地模拟试验,模拟结果与试验结果吻合较好,有限元计算结果表明:承载力随波形钢板的厚度和波角的增加有少量增加,此外,波形钢板-混凝土组合剪力墙承载力随剪跨比的增加而降低,竖向波形钢板剪力墙的抗侧承载力性能与水平波形钢板剪力墙的基本相同;该文提出的波形钢板剪力墙及其组合墙抗剪承载力计算公式,计算值与试验值吻合良好,可为设计和工程实际参考; H型钢柱对波形钢板-混凝土组合剪力墙的抗剪承载力贡献最小,竖向波形钢板对组合墙剪力分担率大于水平波形钢板的,竖向波形钢板更有利于提升组合墙的承载性能。

关键词: 波形钢板剪力墙, 波角, 钢板厚度, 滞回性能, 低周循环加载试验, 有限元分析, 抗剪承载力公式

Abstract: In order to study the failure pattern and mechanical behavior, and to develop shear bearing capacity calculation methods for corrugated steel plate (CSP) shear wall and CSP-composite wall under horizontal loads, 4 corrugated steel plate shear wall and CSP-composite wall specimens were designed and tested under low-cyclic reverse loading. 24 corrugated steel plate shear wall and CSP-composite wall models were simulated using the ABAQUS finite element software. The results show that the corrugated steel plate shear wall has better deformability, the corrugated steel plate can effectively inhibit the development of concrete cracks, and has good bond stress with concrete. The horizontal corrugated steel plate shear wall is likely to develop a plastic hinge at the bottom of the constraining edge member. Corrugated steel plate shear wall and CSP-composite wall has good load bearing capacity, ductility and energy dissipation capacity, and load bearing capacity decreases slowly.ABAQUS finite element software can simulate the test well, the simulation results have good agreement with the test results, the finite element calculation results demonstrate that the shear bearing capacity increases with the increase of the thickness of the corrugated steel plate and the wave angle. In addition, the load bearing capacity of CSP-composite shear wall decreases with the increasing of the shear-span ratio. The lateral bearing capacity of the vertical corrugated steel plate shear wall is basically the same as that of the horizontal corrugated steel plate shear wall. The calculation formula for the bearing capacity of corrugated steel plate shear wall and CSP-composite wall proposed is in good agreement with the test results, and it can serve as a practical reference for design and engineering application in the future. The H-shaped steel column has slight contribution to the load bearing capacity of the CSP-composite shear wall. The vertical corrugated steel plate has a higher shear share ratio than the horizontal corrugated steel plate, and improves the shear bearing capacity of the CSP-composite wall significantly.

Key words: corrugated steel plate shear wall, wave angle, thickness of steel plate, hysteretic behavior, low-cycle reverse loading test, finite element analysis, formula of shear bearing capacity

中图分类号: 

  • TU398.2
[1] Berman J W. Seismic behavior of code designed steel plate shear walls[J]. Engineering structures, 2010, 33(1):230-244.
[2] Wang W, Wang Y, Lu Z. Experimental study on seismic behavior of steel plate reinforced concrete composite shear wall[J]. Engineering Structures, 2018, 160(4):281-292.
[3] Nie J G, Zhu L, Fan J S, et al. Lateral resistance capacity of stiffened steel plate shear walls[J]. Thin-Walled Structures, 2013, 67(2):155-167.
[4] 聂建国, 卜凡民, 樊健生. 高轴压比、低剪跨比双钢板-混凝土组合剪力墙拟静力试验研究[J]. 工程力学, 2013, 30(6):60-66, 76. Nie Jianguo, Bu Fanmin, Fan Jiansheng. Quasi-static test on low shear-span ratio composite shear wall with double steel plates and infill concrete under high axial compression ratio[J]. Engineering Mechanics, 2013, 30(6):60-66, 76. (in Chinese)
[5] 郭兰慧, 李然, 张素梅. 薄钢板剪力墙简化分析模型[J]. 工程力学, 2013, 30(增刊1):149-153. Guo Lanhui, Li Ran, Zhang Sumei. Simplified model of thin-walled steel plate shear walls[J]. Engineering Mechanics, 2013, 30(Suppl 1):149-153. (in Chinese)
[6] 汤序霖, 丁昌银, 陈庆军, 等. 带加劲肋多腔双层钢板-混凝土组合剪力墙的抗震性能试验[J]. 工程力学, 2017, 34(12):150-161. Tang Xulin, Ding Changyin, Chen Qingjun, et al. Seismic behavior of composite shear wall with double steel plates and infill concrete with stiffeners[J]. Engineering Mechanics, 2017, 34(12):150-161.
[7] 郭彦林, 周明, 董全利. 防屈曲钢板剪力墙弹塑性抗剪极限承载力与滞回性能研究[J]. 工程力学, 2009, 26(2):108-114. Guo Yanlin, Zhou Ming, Dong Quanli. Hysteretic behavior of buckling-restrained steel plate shear wall[J]. Engineering Mechanics, 2009, 26(2):108-114. (in Chinese)
[8] 王威, 张龙旭, 苏三庆, 等. 波形钢板剪力墙抗震性能试验研究[J]. 建筑结构学报, 2018, 39(5):36-44. Wang Wei, Zhang Longxu, Su Sanqing, et al. Experimental research on seismic behavior of corrugated steel plate shear wall[J]. Journal of Building Structures, 2018, 39(5):36-44. (in Chinese)
[9] FEMA. Nehrp recommended provisions and commentary for seismic regulations for new buildings and other structures[S]. Washington DC:Federal Emergency Agency, 2003.
[10] Thorburn L J, Kulak G L, Montgomery C J. Analysis of steel plate shear walls[R]. Canada:University of Alberta, 1983:1-15.
[11] Yi J, Gil H, Youm K, et al. Interactive shear buckling behavior of trapezoid ally corrugated steel webs[J]. Engineering Structures, 2008, 30(6):1659-1666.
[12] GB/T 2975-1998, 钢及钢产品力学性能试验取样位置及试样制备[S]. 北京:中国标准出版社, 1998. GB/T 2975-1998, The sampling position of mechanical properties of steel and steel products and the preparation of sample[S]. Beijing:Standards Press of China, 1998. (in Chinese)
[13] 邱法维. 结构抗震实验方法进展[J]. 土木工程学报, 2004, 37(10):19-27. Qiu Fawei. Progress in structural seismic experimental methods[J]. Journal of Civil Engineering, 2004, 37(10):19-27. (in Chinese)
[14] 韩清凯, 刘杰, 闻邦椿. 不对称滞回模型的一般形式及其参数慢变特性[J]. 振动与冲击, 2000, 19(3):14-16. Han Qingkai, Liu Jie, Wen Bangchun. The general form of asymmetric hysteretic model and slow varying characteristics[J]. Journal of Vibration and Shock, 2000, 19(3):14-16. (in Chinese)
[15] JGJ/T 380-2015, 钢板剪力墙技术规程[S]. 北京:中国建筑工业出版社, 2016. JGJ/T 380-2015, Technical specification for steel plate shear wall[S]. Beijing:China Architecture & Building Press, 2016. (in Chinese)
[16] 王萌, 石永久, 王元清. 考虑累积损伤退化的钢材等效本构模型研究[J]. 建筑结构学报, 2013, 34(10):73-83. Wang Meng, Shi Yongjiu, Wang Yuanqing. Study on equivalent constitutive model of steel with cumulative degradation and damage[J]. Journal of Building Structures, 2013, 34(10):73-83. (in Chinese)
[17] 张劲, 王庆扬, 胡守营, 等. ABAQUS混凝土损伤塑性模型参数验证[J]. 建筑结构, 2008, 38(8):127-130. Zhang Jin, Wang Qingyang, Hu Shouying, et al. Parameters verification of concrete damaged plastic model of ABAQUS[J]. Building Structure, 2008, 38(8):127-130. (in Chinese)
[18] 聂建国, 王宇航. ABAQUS中混凝土本构模型用于模拟结构静力行为的比较研究[J]. 工程力学, 2013, 30(4):59-67, 82. Nie Jianguo, Wang Yuhang. Comparative study of constitutive model of concrete in ABAQUS for static analysis of structures[J]. Engineering Mechanics, 2013, 30(4):59-67, 82. (in Chinese)
[19] Sabouri-Ghomi S, Ventura C E, Kharrazi M H K. Shear analysis and design of ductile steel plate walls[J]. Journal of Structural Engineering, 2004, 131(6):878-889.
[20] JGJ 138-2016, 组合结构设计规范[S]. 北京:中国建筑工业出版社, 2016. JGJ 138-2016, Code for design of composite structures[S]. Beijing:China Architecture & Building Press, 2016. (in Chinese)
[1] 李达, 牟在根. 内嵌VV-SPSW平面钢框架结构抗震性能研究[J]. 工程力学, 2019, 36(S1): 210-216.
[2] 杨志坚, 韩嘉明, 雷岳强, 赵海龙, 胡嘉飞. 预应力混凝土管桩与承台连接节点抗震性能研究[J]. 工程力学, 2019, 36(S1): 248-254.
[3] 林德慧, 陈以一. 部分填充钢-混凝土组合柱整体稳定分析[J]. 工程力学, 2019, 36(S1): 71-77,85.
[4] 谢启芳, 张利朋, 王龙, 崔雅珍, 杨柳洁. 拔榫状态下直榫节点滞回性能有限元分析[J]. 工程力学, 2019, 36(S1): 138-143.
[5] 杨浩, 罗帅, 邢国然, 王伟. 杆梁组合结构的有限元分析[J]. 工程力学, 2019, 36(S1): 154-157,169.
[6] 刘嘉琳, 徐龙河. 带自复位耗能支撑钢板剪力墙墙板受力性能研究[J]. 工程力学, 2019, 36(7): 156-164.
[7] 钱海峰, 赵婧同, 王元清, 王登峰. 考虑除尘器箱体墙板-立柱协同受力时立柱在横向荷载作用下的内力计算[J]. 工程力学, 2019, 36(7): 227-237,247.
[8] 杨俊芬, 程锦鹏, 翟伟, 张文喆. 内填脱硫石膏砌块墙体的新型装配式钢框架抗震性能研究[J]. 工程力学, 2019, 36(6): 147-156.
[9] 牟犇, 王君昌, 崔瑶, 庞力艺, 松尾真太朗. 一种改进型方钢管柱与钢梁连接节点抗震性能研究[J]. 工程力学, 2019, 36(6): 164-174.
[10] 常笑, 杨璐, 王萌, 尹飞. 循环荷载下奥氏体型和双相型不锈钢材料本构关系研究[J]. 工程力学, 2019, 36(5): 137-147.
[11] 朱张峰, 郭正兴. 考虑竖向与水平接缝的工字形装配式混凝土剪力墙抗震性能试验研究[J]. 工程力学, 2019, 36(3): 139-148.
[12] 周云, 陈太平, 胡翔, 易伟建. 考虑周边结构约束影响的RC框架结构防连续倒塌性能研究[J]. 工程力学, 2019, 36(1): 216-226,237.
[13] 温科伟, 刘树亚, 杨红坡. 基于小应变硬化土模型的基坑开挖对下穿地铁隧道影响的三维数值模拟分析[J]. 工程力学, 2018, 35(S1): 80-87.
[14] 王兵, 尤洪旭, 刘晓. 高温后型钢再生混凝土梁受弯研究[J]. 工程力学, 2018, 35(S1): 161-165,180.
[15] 杨志坚, 雷岳强, 谭雅文, 李帼昌, 王景明. 改进的PHC管桩与承台连接处桩端受力性能研究[J]. 工程力学, 2018, 35(S1): 223-229.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日