工程力学 ›› 2019, Vol. 36 ›› Issue (7): 38-47.doi: 10.6052/j.issn.1000-4750.2018.06.0355

• 基本方法 • 上一篇    下一篇

基于时滞追踪的实时混合试验自适应补偿方法

李宁1,2,3, 周子豪1, 李忠献1,2,3   

  1. 1. 天津大学建筑工程学院, 天津 300072;
    2. 滨海土木工程结构与安全教育部重点实验室, 天津 300072;
    3. 中国地震局地震工程综合模拟与城乡抗震韧性重点实验室(天津大学), 天津 300350
  • 收稿日期:2018-06-30 修回日期:2019-01-11 出版日期:2019-07-06 发布日期:2019-07-06
  • 通讯作者: 李宁(1981-),男,山西人,教授,博士,博导,从事工程结构抗震研究(E-mail:neallee@tju.edu.cn). E-mail:neallee@tju.edu.cn
  • 作者简介:周子豪(1993-),男,山东人,硕士生,从事子结构试验方法研究(E-mail:2016205229@tju.edu.cn);李忠献(1961-),男,安徽人,教授,博士,博导,从事工程抗震、减震与控制方面的研究(E-mail:zxli@tju.edu.cn).
  • 基金资助:
    国家重点研发计划项目(2016YFC0701108,2018YFC1504306);国家自然科学基金重大科研仪器研制项目(51427901);国家自然科学基金面上项目(51678407)

Time-delay tracing based adaptive compensation algorithm for real-time hybrid testing

LI Ning1,2,3, ZHOU Zi-hao1, LI Zhong-xian1,2,3   

  1. 1. School of Civil Engineering, Tianjin University, Tianjin 300072, China;
    2. Key Laboratory of Coast Civil Engineering Structures Safety, Ministry of Education, Tianjin 300072, China;
    3. Key Laboratory of Earthquake Engineering Simulation and Seismic Resilience of China Earthquake Administration(Tianjin University), Tianjin 300350, China
  • Received:2018-06-30 Revised:2019-01-11 Online:2019-07-06 Published:2019-07-06

摘要: 实时子结构试验方法因其高效、适用面广,近20年来受到结构试验领域的重视。虽然近年来硬件技术有所提升,但仍受到一些限制,例如,作动器加载时运动机构和控制回路存在时滞,导致无法准确地施加位移。故实时子结构试验中,如何消除时滞影响成为试验成功与否的关键所在。为了减小和消除实时子结构试验中时滞的不利效应,该文首先根据液压伺服作动系统和Simulink建立了实时子结构试验平台,而后提出了基于时滞追踪的自适应补偿方法,最后采用数值仿真和子结构加载试验进行了验证和参数分析。结果表明:该算法可根据作动系统负载不同对时滞实时自适应地补偿,从而避免迭代试验。该方法不改变原控制器固有算法,也无需对系统时滞参量进行预判定或系统辨识,只需将提出的自适应补偿算法串联接入到系统之中即可,实用性、鲁棒性好。算法对非线性系统导致的时变时滞效应也有理想的补偿效果,通过一个铝合金梁的弯曲测试说明了该算法的正确性,可推广应用于结构实时仿真试验。

关键词: 实时子结构试验, 时滞追踪, 自适应, 反补偿, 液压伺服系统

Abstract: The real-time hybrid testing method has drawn more attention in the field of structural test in the past 20 years due to its high efficiency and wide applicability. Although hardware technology has improved in recent years, it is still subjected to some restrictions. One of the most important factors is that the time delay of the control loop due to the actuator cannot apply real-time displacement on the specimen. Therefore, in the real-time hybrid testing, how to eliminate the influence of time delay becomes the key to the success of real-time hybrid test. To reduce the unfavorable effects of time delay, a real-time hybrid testing platform based on hydraulic servo drive system is established using Matlab/Simulink. Then, an adaptive compensation method based on time-delay tracking is proposed. Finally, numerical simulations are performed for parameter analysis and are validated by the specimen loading test. The results show that the algorithm is capable of adaptive compensation of time delays in different cases of loading patterns. Thus, it can avoid iteration during testing. This method does not need to change the original controller's inherent algorithm and does not need to perform parameter estimation or system identification for the time-delay system. It is only necessary to embed the proposed compensator into the system as a plugin component, which is efficient, practical, and robust. The algorithm also has a good compensation effect on the time-varying delay caused by the nonlinear system. The bending test of an aluminum alloy steel beam shows that the accuracy of the algorithm and can be widely applied to real-time structural simulation tests.

Key words: real-time hybrid testing, time-delay tracking, adaptive control, inverse compensation, hydraulic servo testing system

中图分类号: 

  • TU317
[1] Newmark N M. A method of computation for structural dynamics[J]. American Society of Civil Engineers, 1959, 85(1):67-94.
[2] Chen C, Ricles J M. Development of direct integration algorithms for structural dynamics using discrete control theory[J]. Journal of Engineering Mechanics, 2008, 134(8):676-683.
[3] Kolay C, Ricles J M. Development of a family of un-conditionally stable explicit direct integration algorithms with controllable numerical energy dissipation[J]. Earthquake Engineering & Structural Dynamics, 2014, 43(9):1361-1380.
[4] Nakagawa M, Horiuchi T, Kametani M, et al. Development of a real-time on-line vibration testing system by substructuring method[J]. Transactions of the Japan Society of Mechanical Engineers, 1994, 60(570):412-417.
[5] Wallace M I, Sieber J, Neild S A, et al. Stability analysis of real-time dynamic substructuring using delay differential equation models[J]. Earthquake Engineering & Structural Dynamics, 2010, 34(15):1817-1832.
[6] Mercan O, Ricles J M. Stability and accuracy analysis of outer loop dynamics in real-time pseudo-dynamic testing of SDOF systems[J]. Earthquake Engineering & Structural Dynamics, 2007, 36(11):1523-1543.
[7] Chen C, Ricles J M. Stability analysis of SDOF real-time hybrid testing systems with explicit integration algorithms and actuator delay[J]. Earthquake Engineering & Structural Dynamics, 2008, 37(4):597-613.
[8] Darby A P, Williams M S, Blakeborough A. Stability and delay compensation for real-time substructure testing[J]. Journal of Engineering Mechanics, 2002, 128(12):1276-1284.
[9] Ahmadizadeh M, Mosqueda G, Reinhorn A M. Compensation of actuator delay and dynamics for real-time hybrid structural simulation[J]. Earthquake Engineering & Structural Dynamics, 2010, 37(1):21-42.
[10] Bonnet P A, Lim C N, Williams M S, et al. Real-timehybrid experiments with Newmark integration, MCSmd outer-loop control and multi-tasking strategies[J]. Earthquake Engineering & Structural Dynamics, 2010, 36(1):119-141.
[11] Chen Cheng. Development and numerical simulation of hybrid effective force testing method[D]. Bethlehem, PA, Dept. of Civil and Environmental Engineering, Lehigh University, 2009.
[12] Chen C, Ricles J M. Improving the inverse compensate-on method for real-time hybrid simulation through a dual compensation scheme[J]. Earthquake Engineering & Structural Dynamics, 2009, 38(10):1237-1255.
[13] Chen C, Ricles J M, Guo T. Improved adaptive inverse compensation technique for real-time hybrid simulation[J]. Journal of Engineering Mechanics, 2012, 138(12):1432-1446.
[14] Mercan O. Analytical and experimental studies on large scale, real-time pseudodynamic testing[D]. Bethlehem, PA, Dept. of Civil and Environmental Engineering, Lehigh University, 2007.
[1] 陈恒, 肖映雄, 郭瑞奇. 基于p型自适应有限元法的混凝土骨料模型数值模拟[J]. 工程力学, 2019, 36(S1): 158-164.
[2] 董义义, 邢沁妍, 方楠, 袁驷. 自适应有限元线法在二维无穷域问题中的应用[J]. 工程力学, 2019, 36(7): 8-17.
[3] 李正良, 祖云飞, 范文亮, 周擎宇. 基于自适应点估计和最大熵原理的结构体系多构件可靠度分析[J]. 工程力学, 2019, 36(5): 166-175.
[4] 汪超, 谢能刚, 黄璐璐. 基于扩展等几何分析和混沌离子运动算法的带孔结构形状优化设计[J]. 工程力学, 2019, 36(4): 248-256.
[5] 孙浩涵, 袁驷. 基于EEP超收敛解的自适应有限元法特性分析[J]. 工程力学, 2019, 36(2): 17-25.
[6] 袁驷, 蒋凯峰, 邢沁妍. 膜结构极小曲面找形的一种自适应有限元分析[J]. 工程力学, 2019, 36(1): 15-22.
[7] 王永亮, 鞠杨, 陈佳亮, 杨永明, Li C F. 自适应有限元-离散元算法、ELFEN软件及页岩体积压裂应用[J]. 工程力学, 2018, 35(9): 17-25,36.
[8] 王贞, 李强, 吴斌. 实时混合试验的自适应时滞补偿方法[J]. 工程力学, 2018, 35(9): 37-43.
[9] 袁全, 袁驷, 李易, 闫维明, 邢沁妍. 线性元时程积分按最大模自适应步长公式的证明[J]. 工程力学, 2018, 35(8): 9-13.
[10] 唐贞云, 郭珺, 洪越, 李易, 李振宝. 多自由度实时子结构试验系统稳定性分析方法[J]. 工程力学, 2018, 35(3): 22-29.
[11] 初明进, 张庆池, 刘继良, 邱臻, 王琳, 谢天宇. 配置不同水平钢筋的自适应分缝剪力墙受剪性能试验研究[J]. 工程力学, 2018, 35(2): 214-220.
[12] 袁驷, 袁全, 闫维明, 李易, 邢沁妍. 运动方程自适应步长求解的一个新进展——基于EEP超收敛计算的线性有限元法[J]. 工程力学, 2018, 35(2): 13-20.
[13] 潘兆东, 谭平, 周福霖. 基于保性能自适应RBF神经网络的MR半主动非线性鲁棒分散控制[J]. 工程力学, 2018, 35(10): 47-55.
[14] 李雁军, 吕大刚, 王震宇. 基于自适应POA和IDA的RC框架填充墙结构超强系数分析[J]. 工程力学, 2017, 34(增刊): 197-201.
[15] 杨成, 唐泽楠, 常志旺, 黄国庆, 徐腾飞. 基于经验模态分解的速度脉冲型地震动量化识别[J]. 工程力学, 2017, 34(4): 206-212.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日