工程力学 ›› 2019, Vol. 36 ›› Issue (7): 174-183.doi: 10.6052/j.issn.1000-4750.2018.06.0354

• 土木工程学科 • 上一篇    下一篇

氯离子及迷流共同作用下持荷盾构管片钢筋锈层形态

余朔1,2, 金浩1,2, 周顺华1,2, 毕湘利3   

  1. 1. 同济大学道路与交通工程教育部重点实验室, 上海 201804;
    2. 上海市轨道交通结构耐久与系统安全重点实验室, 上海 201804;
    3. 上海申通地铁集团有限公司技术中心, 上海 201103
  • 收稿日期:2018-06-30 修回日期:2018-10-13 出版日期:2019-07-06 发布日期:2019-07-06
  • 通讯作者: 金浩(1986-),男,浙江人,助理教授,博士,主要从事地下铁道混凝土结构耐久性研究(E-mail:jinhao@tongji.edu.cn). E-mail:jinhao@tongji.edu.cn
  • 作者简介:余朔(1991-),男,四川人,博士生,主要从事盾构隧道结构耐久性研究(E-mail:1610735@tongji.edu.cn);周顺华(1964-),男,浙江人,教授,博士,博导,主要从事盾构隧道结构承载性能研究(E-mail:zhoushh@tongji.edu.cn);毕湘利(1970-),男,吉林人,高工,博士,博导,主要从事盾构隧道结构承载性能研究(E-mail:bixiangli2@163.com).
  • 基金资助:
    国家重点研发计划项目(2017YFB1201204);国家自然科学基金项目(51478353,41472247)

Steel rust layer form of sustained load segments under combined action of chloride ion and stray current

YU Shuo1,2, JIN Hao1,2, ZHOU Shun-hua1,2, BI Xiang-li3   

  1. 1. Key Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji University, Shanghai 201804, China;
    2. Shanghai Key Laboratory of Rail Infrastructure Durability and System Safety, Shanghai 201804, China;
    3. The Technical Center of Shanghai Shentong Metro Group Co., Ltd., Shanghai 201103, China
  • Received:2018-06-30 Revised:2018-10-13 Online:2019-07-06 Published:2019-07-06

摘要: 针对盾构隧道结构在服役期间可能出现钢筋锈蚀的问题,考虑杂散电流、氯离子及外部荷载共同作用,建立了电-化-力三场耦合的三维管片数值模型,分析了多因素作用下拱腰部位管片钢筋的锈蚀率变化规律及锈层分布形态。研究表明: 1)靠近管片外侧钢筋的锈蚀率比内侧的大,不同区域的钢筋出现最大锈蚀率的位置与连心线的夹角在0°~52°之间。2)在荷载作用下管片钢筋的锈蚀率与体积应变有关,管片中部的锈蚀率大于两端的锈蚀率。3)在钢筋脱钝情况下,管片钢筋的锈蚀率随阴阳极电势差增大呈线性增加,随氯离子含量增大呈对数增加。4)在三种因素共同作用下管片钢筋的锈层分布呈偏心圆形态,且偏心圆圆心坐标及半径的大小与钢筋不均匀锈蚀系数及最大腐蚀电流密度有关。

关键词: 盾构管片, 钢筋锈蚀, 杂散电流, 氯离子, 外部荷载

Abstract: Under the influence of stray current as well as chloride ion and external load, the shield tunnel steel easily appear corrosion during its service period. Therefore, a three-dimensional numerical model is established in an electrical as well as chemical and mechanical coupling field. The change rule of segment steel corrosion rate at arch and the steel rust layer distribution form are analyzed. The results show that:1) the steel corrosion rate near the segment outside is larger than that near the inside, the intersection angle between the direction of maximum steel corrosion rate and the circle center line is 0°~52°; 2) the segment steel corrosion rate is related to volumetric strain under loading, and the segment steel corrosion rate in the middle is larger than that in the two ends; 3) when the steel occur depassivation, the steel corrosion rate increases linearly with the potential difference of cathode to anode, and it increases logarithmically with the chloride ion content; 4) under the joint action of three factors, the segment steel rust layer form appear eccentric circle, and the radius size and circular center are related to the non-uniform corrosion coefficient as well as the maximum corrosion current density.

Key words: shield segment, steel corrosion, stray current, chloride ion, external load

中图分类号: 

  • U455.43
[1] Ožbolt J, Oršanić F, Balabanić G, et al. Modeling damage in concrete caused by corrosion of reinforcement:coupled 3D FE model[J]. International Journal of Fracture, 2012, 178(1):233-244.
[2] 马亚飞, 王磊, 张建仁. 锈胀钢筋混凝土拱肋承载力试验与模拟[J]. 工程力学, 2017, 34(3):155-161. Ma Yafei, Wang Lei, Zhang Jianren. Experimental and numerical studies on reinforced concrete arch ribs with corrosion-induced cracks[J]. Engineering Mechanics, 2017, 34(3):155-161. (in Chinese)
[3] 何川, 封坤, 方勇. 盾构法修建地铁隧道的技术现状与展望[J]. 西南交通大学学报, 2015, 50(1):97-109. He Chuan, Feng Kun, Fang Yong. Review and prospects on constructing technologies of metro tunnels using shield tunnelling method[J]. Journal of Southwest Jiaotong University, 2015, 50(1):97-109. (in Chinese)
[4] Bertolini L, Carsana M, Pedeferri P. Corrosion behaviour of steel in concrete in the presence of stray current[J]. Corrosion Science, 2007, 49(3):1056-1068.
[5] Lei M, Peng L, Shi C. An experimental study on durability of shield segments under load and chloride environment coupling effect[J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 2014, 42(5):15-24.
[6] Li Q, Yu H, Ma H, et al. Test on durability of shield tunnel concrete segment under coupling multi-factors[J]. Open Civil Engineering Journal, 2014, 8(1):451-457.
[7] 刘四进, 何川, 孙齐, 等. 腐蚀离子环境中盾构隧道衬砌结构侵蚀劣化机理[J]. 中国公路学报, 2017, 30(8):125-133. Liu Sijin, He Chuan, Shun Qi, et al. Erosion degradation mechanism of shield tunnel lining structure in corrosive ion environment[J]. China Journal of Highway and Transport, 2017, 30(8):125-133. (in Chinese)
[8] Hong Y, Li Z, Qiao G, et al. Numerical simulation and experimental investigation of the stray current corrosion of viaducts in the high-speed rail transit system[J]. International Review of Economics & Finance, 2017, 33(3):319-337.
[9] Ožbolt J, Balabanić G, Kušter M. 3D numerical modelling of steel corrosion in concrete structures[J]. Corrosion Science, 2011, 53(12):4166-4177.
[10] Cao C. 3D simulation of localized steel corrosion in chloride contaminated reinforced concrete[J]. Construction & Building Materials, 2014, 72(12):434-443.
[11] Zhu X, Zi G. A 2D mechano-chemical model for the simulation of reinforcement corrosion and concrete damage[J]. Construction & Building Materials, 2017, 137:330-344.
[12] O. Burkan Isgor, A. Ghani Razaqpur. Modelling steel corrosion in concrete structures[J]. Materials and Structures, 2006, 39(3):291-302.
[13] Greenwood D J, Goodman D. Direct measurements of the distribution of distribution of oxygen in soil aggregates and in columns of fine soil crumbs[J]. European Journal of Soil Science, 2010, 18(1):182-196.
[14] Hussain R R. Enhanced classical Tafel diagram model for corrosion of steel in chloride contaminated concrete and the experimental non-linear effect of temperature[J]. International Journal of Concrete Structures & Materials, 2010, 4(2):71-75.
[15] Cao C, Cheung M M S. Non-uniform rust expansion for chloride-induced pitting corrosion in RC structures[J]. Construction & Building Materials, 2014, 51(1):75-81.
[16] Muehlenkamp E B, M. D. Koretsky, Westall J C. Effect of moisture on the spatial uniformity of cathodic protection of steel in reinforced concrete[J]. Corrosion the Journal of Science & Engineering, 2005, 61(6):519-533.
[17] 金浏, 张仁波, 杜修力. 低应力水平下混凝土中氯离子扩散行为多尺度分析方法[J]. 工程力学, 2017, 34(3):84-92. Jin Liu, Zhang Renbo, Du Xiuli. Multiscale analysis for the chloridoid diffusivity in concrete subjected to low-level stress[J]. Engineering Mechanics, 2017, 34(3):84-92. (in Chinese)
[18] Du X L, Jin L, Zhang R B. Chloride diffusivity in saturated cement paste subjected to external mechanical loadings[J]. Ocean Engineering, 2015, 95(2):1-10.
[19] Papadakis V G. Fundamental modeling and experimental investigation of concrete carbonation[J]. Aci Material Journal, 1991, 88(4):363-373.
[20] Hansen T C. Physical structure of hardened cement paste. A classical approach[J]. Materials & Structures, 1986, 19(6):423-436.
[21] Suda K, Misra S, Motohashi K. Corrosion products of reinforcing bars embedded in concrete[J]. Corrosion Science, 1993, 35(5/6/7/8):1543-1549.
[22] Bhargava K, Ghosh A K, Mori Y, et al. Model for cover cracking due to rebar corrosion in RC structures[J]. Engineering Structures, 2006, 28(8):1093-1109.
[23] Zhao Y, Hu B, Yu J, et al. Non-uniform distribution of rust layer around steel bar in concrete[J]. Corrosion Science, 2011, 53(12):4300-4308.
[24] Thybo A E A, Michel A, Stang H. Smeared crack modelling approach for corrosion-induced concrete damage[J]. Materials & Structures, 2018, 50(2):1-14.
[1] 郑山锁, 刘巍, 左河山, 董立国, 李强强. 近海大气环境下考虑锈蚀的不同剪跨比RC框架梁抗震性能试验[J]. 工程力学, 2018, 35(4): 78-86.
[2] 郑山锁, 左河山, 刘巍, 黄鹰歌, 周京良, 郑捷. 一般大气环境下低剪跨比RC框架梁抗震性能试验研究[J]. 工程力学, 2017, 34(7): 186-194.
[3] 金浏, 张仁波, 杜修力. 低应力水平下混凝土中氯离子扩散行为多尺度分析方法[J]. 工程力学, 2017, 34(3): 84-92.
[4] 成虎, 李宏男, 王东升, 李超, 付兴. 考虑锈蚀黏结退化的钢筋混凝土桥墩抗震性能分析[J]. 工程力学, 2017, 34(12): 48-58.
[5] 庞龙, 应宗权, 范志宏, 田俊峰, 李全旺. 基于实测数据的港工混凝土结构环境荷载模型及耐久性分析[J]. 工程力学, 2016, 33(增刊): 168-172.
[6] 程坤, 项贻强. 考虑钢筋锈蚀的复合受扭混凝土箱梁时变承载力研究[J]. 工程力学, 2016, 33(9): 109-115.
[7] 金浏, 杜修力, 李悦. 氯离子在饱和混凝土裂缝中的扩散系数分析[J]. 工程力学, 2016, 33(5): 50-56,73.
[8] 李立峰, 吴文朋, 胡思聪, 刘守苗. 考虑氯离子侵蚀的高墩桥梁时变地震易损性分析[J]. 工程力学, 2016, 33(1): 163-170.
[9] 金浏, 杜修力, 张仁波. 荷载作用下饱和水泥浆体中氯离子扩散性能研究[J]. 工程力学, 2015, 32(6): 33-40.
[10] 张秦铭,李全旺,李克非,范志宏. 氯盐环境下港珠澳工程混凝土耐久性质量控制[J]. 工程力学, 2015, 32(3): 175-182.
[11] 杨海峰,邓志恒,覃英宏. 钢筋锈蚀后与再生混凝土间粘结-滑移本构关系研究[J]. 工程力学, 2015, 32(10): 114-122.
[12] 夏辉,周新刚,李克非. 不同暴露条件下海工混凝土耐久性几何效应分析[J]. 工程力学, 2013, 30(9): 227-233.
[13] 彭建新, 胡守旺, 张建仁. 考虑温室效应的氯盐环境下RC桥梁锈胀开裂性能预测[J]. 工程力学, 2013, 30(8): 103-110.
[14] 周新刚,李克非,陈肇元. 氯离子在混凝土中扩散传输的有限体积法模拟分析[J]. 工程力学, 2013, 30(7): 34-39.
[15] 张邵峰, 陆春华, 陈妤, 刘荣桂, 崔钊玮. 裂缝对混凝土内氯离子扩散和钢筋锈蚀的影响[J]. 工程力学, 2012, 29(增刊I): 97-100.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日