工程力学 ›› 2019, Vol. 36 ›› Issue (7): 8-17.doi: 10.6052/j.issn.1000-4750.2018.06.0351

• 基本方法 • 上一篇    下一篇

自适应有限元线法在二维无穷域问题中的应用

董义义, 邢沁妍, 方楠, 袁驷   

  1. 清华大学土木工程系, 土木工程安全与耐久教育部重点实验室, 北京 100084
  • 收稿日期:2018-06-26 修回日期:2018-09-25 出版日期:2019-07-06 发布日期:2019-07-06
  • 通讯作者: 邢沁妍(1981-),女,辽宁人,讲师,博士,主要从事结构工程研究(E-mail:xingqy@tsinghua.edu.cn). E-mail:xingqy@tsinghua.edu.cn
  • 作者简介:董义义(1991-),男,安徽人,博士生,主要从事结构工程研究(E-mail:dongyy17@mails.tsinghua.edu.cn);方楠(1981-),男,黑龙江人,博士,主要从事结构工程研究(E-mail:fangnan99@mails.tsinghua.edu.cn);袁驷(1953-),男,北京人,教授,博士,主要从事结构工程研究(E-mail:yuans@tsinghua.edu.cn).
  • 基金资助:
    国家自然科学基金项目(51508305,51378293,51078199)

Application of adaptive finite element method of lines in 2D unbounded domain problems

DONG Yi-yi, XING Qin-yan, FANG Nan, YUAN Si   

  1. Department of Civil Engineering, Key Laboratory of Civil Engineering Safety and Durability of China Education Ministry, Tsinghua University, Beijing 100084, China
  • Received:2018-06-26 Revised:2018-09-25 Online:2019-07-06 Published:2019-07-06

摘要: 无穷域问题广泛存在于实际工程中,半解析、半离散的数值计算方法—有限元线法(Finite ElementMethod of Lines,简称FEMOL)对其具有较好的适应性。在已有的映射型FEMOL无穷单元理论的基础上,基于单元能量投影(Element Energy Projection,简称EEP)法的自适应FEMOL被应用于二维无穷域问题的求解。用户只需输入稀疏的初始网格和误差限,算法即自动生成优化的FEMOL网格,该网格上常规单元和无穷单元的FEMOL解均按最大模度量满足给定误差限。文中首先介绍二维FEMOL的原理策略、无穷单元的构建,然后概述基于EEP法的自适应FEMOL算法,并讨论其对无穷域问题的适用性,之后对圆柱绕流的Poisson方程问题、带孔无穷大板单向拉伸的弹性力学平面问题、受圆形均布荷载半空间体的三维轴对称问题进行了自适应分析,最终不仅给出了满足误差限的函数(位移)解,也给出了具有优良性态的导数(应力)解,从而为无穷域问题的求解提供了一种高效可靠的新途径。

关键词: 无穷域问题, 自适应, 有限元线法, 无穷单元, 单元能量投影

Abstract: Unbounded domain problems are frequently encountered in engineering. As a semi-analytical and semi-discretized numerical method, Finite Element Method of Lines (FEMOL) has shown good performance on this type of problems. Based on the proposed theory of infinite elements with mapping technique, the adaptive FEMOL with Element Energy Projection (EEP) super-convergent method is applied to the solution of 2D unbounded domain problems, in which users are only required to pre-specify an error tolerance and a rough initial mesh, and then an adaptive FEMOL mesh is automatically produced by the algorithm, on which the accuracy of FEMOL solution with both regular elements and infinite elements satisfies the specified error tolerance in maximum norm. An introduction of the theory of FEMOL and the infinite elements are given firstly, and then the strategy of adaptive FEMOL based on EEP method is presented. The feasibility of applying the adaptive FEMOL to unbounded domain problems is analyzed. Then three unbounded domain problems are adaptively solved, including the Poisson equation of flow around a circular cylinder, the plane problem of uniaxial tension of infinite plate with a circle hole in elasticity, and the semi-infinite half space body under uniformly distributed circular load. Finally the displacements (function solutions) satisfying the error tolerance can be obtained and the stresses (derivative solutions) with superior accuracy can be calculated. Therefore the adaptive FEMOL can be taken as a new approach for solution of unbounded domain problems.

Key words: unbounded domain problems, self-adaptivity, finite element method of lines (FEMOL), infinite elements, element energy projection (EEP)

中图分类号: 

  • O241.82
[1] Erkal A, Laefer D F, Tezcan S. Advantages of infinite elements over prespecified boundary conditions in unbounded problems[J]. Journal of Computing in Civil Engineering, 2014, 29(6):04014085.
[2] 赵崇斌, 张楚汉, 张光斗. 用无穷元模拟拱坝地基[J]. 水利学报, 1987, 18(2):21-36. Zhao Chongbin, Zhang Chuhan, Zhang Guangdou. Simulation of arch dam foundation by using infinite element[J]. Journal of Hydraulic Engineering, 1987, 18(2):21-36. (in Chinese)
[3] Ungless R F. Infinite finite element[D]. Vancouver:University of British Columbia, 1973.
[4] Bettess P. Infinite elements[J]. International Journal for Numerical Methods in Engineering, 1977, 11(1):53-64.
[5] Zienkiewicz O C, Emson C, Bettess P. A novel boundary infinite element[J]. International Journal for Numerical Methods in Engineering, 1983, 19(3):393-404.
[6] Curnier A. A static infinite element[J]. International Journal for Numerical Methods in Engineering, 1983, 19(10):1479-1488.
[7] Medina F. Modelling of soil-structure interaction by finite and infinite elements[J]. Dissertation Abstracts International, 1980, 42(7), Section:B:2929.
[8] Honjo Y, Pokharel G. Parametric infinite element for seepage analysis[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1993, 17(1):45-66.
[9] Yang Y B, Hung H H, Lin K C, et al. Dynamic response of elastic half-space with cavity subjected to P and SV waves by finite/infinite element approach[J]. International Journal of Structural Stability and Dynamics, 2015, 15(7):1540009.
[10] Kazakov K S. Elastodynamic infinite elements with united shape functions for soil-structure interaction[J]. Finite Elements in Analysis and Design, 2010, 46(10):936-942.
[11] Wang Q, Brill D R. Improvements in the application of infinite elements to the NIKE3D program for airport pavement response analysis[J]. International Journal of Pavement Engineering, 2013, 14(5):429-439.
[12] Liu P, Wang D, Oeser M. Application of semi-analytical finite element method coupled with infinite element for analysis of asphalt pavement structural response[J]. Journal of Traffic and Transportation Engineering (English Edition), 2015, 2(1):48-58.
[13] Abdel-Fattah T T, Hodhod H A, Akl A Y. A novel formulation of infinite elements for static analysis[J]. Computers & Structures, 2000, 77(4):371-379.
[14] Beer G, Watson J O. Infinite boundary elements[J]. International Journal for Numerical Methods in Engineering, 1989, 28(6):1233-1247.
[15] 石绍春. 有限元线法无穷单元[D]. 北京:清华大学, 1992. Shi Shaochun. Infinite FEMOL elements-Formulation and applications[D]. Beijing:Tsinghua University, 1992. (in Chinese)
[16] 袁驷, 石绍春, 崔京浩. 有限元线法的无穷单元-无穷线的映射[J]. 数值计算与计算机应用, 1998, 19(2):81-89. Yuan Si, Shi Shaochun, Cui Jinghao. An infinite FEMOL element-Infinite line mapping technique[J]. Journal on Numerical Methods and Computer Applications, 1998, 19(2):81-89. (in Chinese)
[17] 袁帅, 钟宏志. 无穷域问题的弱形式求积元分析[J]. 岩土力学, 2016, 37(4):1187-1194. Yuan Shuai, Zhong Hongzhi. Analysis of unbounded domain problems by the weak form quadrature element method[J]. Rock and Soil Mechanics, 2016, 37(4):1187-1194. (in Chinese)
[18] Ascher U, Christiansen J, Russell R D. Algorithm 569, COLSYS:Collocation software for boundary value ODEs[J]. ACM Trans Math Software, 1981, 7(2):223-229.
[19] Yuan S. The finite element method of lines:theory and applications[M]. Beijing-New York:Science Press, 1993.
[20] 庞之垣. 有限元线法的误差估计[J]. 计算数学, 1993, 15(1):110-120. Pang Zhiyuan. The error estimate of finite element method of lines[J]. Mathematica Numerica Sinica, 1993, 15(1):110-120. (in Chinese)
[21] 袁驷, 王枚, 王旭. 二维有限元线法超收敛解答计算的EEP法[J]. 工程力学, 2007, 24(1):1-10. Yuan Si, Wang Mei, Wang Xu. An element-energyprojection method for super-convergent solutions in two-dimensional finite element method of lines[J]. Engineering Mechanics, 2007, 24(1):1-10. (in Chinese)
[22] 袁驷, 方楠, 王旭, 等. 二维有限元线法自适应分析的若干新进展[J]. 工程力学, 2011, 28(3):1-8. Yuan Si, Fang Nan, Wang Xu, et al. New progress in self-adaptive analysis of two-dimensional finite element method of lines[J]. Engineering Mechanics, 2011, 28(3):1-8. (in Chinese)
[23] 袁驷, 王永亮, 徐俊杰. 二维自由振动的有限元线法自适应分析新进展[J]. 工程力学, 2014, 31(1):15-22. Yuan Si, Wang Yongliang, Xu Junjie. New progress in self-adaptive FEMOL analysis of 2D free vibration problems[J]. Engineering Mechanics, 2014, 31(1):15-22. (in Chinese)
[24] 徐俊杰, 袁驷. 有限元线法EEP超收敛计算简约格式的再简约[J]. 工程力学, 2016, 33(增刊1):1-5. Xu Junjie, Yuan Si. Further simplification of the simplified formulation of EEP super-convergent calculation in FEMOL[J]. Engineering Mechanics, 2016, 33(Suppl1):1-5. (in Chinese)
[25] 方楠. 基于EEP法的弹性力学问题有限元线法自适应分析[D]. 北京:清华大学, 2011. Fang Nan. Adaptive FEMOL analysis of elastic problems based on EEP super-convergent method[D]. Beijing:Tsinghua University, 2011. (in Chinese)
[26] Timoshenko S P, Goodier J N. Theory of elasticity[M]. New York:McGraw-Hill, 1987.
[27] 郑邦民. 流体力学[M]. 北京:水利水电出版社, 1989. Zheng Bangmin. Hydromechanics[M]. Beijing:China Water Power Press, 1989. (in Chinese)
[1] 陈恒, 肖映雄, 郭瑞奇. 基于p型自适应有限元法的混凝土骨料模型数值模拟[J]. 工程力学, 2019, 36(S1): 158-164.
[2] 李宁, 周子豪, 李忠献. 基于时滞追踪的实时混合试验自适应补偿方法[J]. 工程力学, 2019, 36(7): 38-47.
[3] 李正良, 祖云飞, 范文亮, 周擎宇. 基于自适应点估计和最大熵原理的结构体系多构件可靠度分析[J]. 工程力学, 2019, 36(5): 166-175.
[4] 汪超, 谢能刚, 黄璐璐. 基于扩展等几何分析和混沌离子运动算法的带孔结构形状优化设计[J]. 工程力学, 2019, 36(4): 248-256.
[5] 孙浩涵, 袁驷. 基于EEP超收敛解的自适应有限元法特性分析[J]. 工程力学, 2019, 36(2): 17-25.
[6] 袁驷, 蒋凯峰, 邢沁妍. 膜结构极小曲面找形的一种自适应有限元分析[J]. 工程力学, 2019, 36(1): 15-22.
[7] 王永亮, 鞠杨, 陈佳亮, 杨永明, Li C F. 自适应有限元-离散元算法、ELFEN软件及页岩体积压裂应用[J]. 工程力学, 2018, 35(9): 17-25,36.
[8] 王贞, 李强, 吴斌. 实时混合试验的自适应时滞补偿方法[J]. 工程力学, 2018, 35(9): 37-43.
[9] 袁全, 袁驷, 李易, 闫维明, 邢沁妍. 线性元时程积分按最大模自适应步长公式的证明[J]. 工程力学, 2018, 35(8): 9-13.
[10] 袁驷, 袁全, 闫维明, 李易, 邢沁妍. 运动方程自适应步长求解的一个新进展——基于EEP超收敛计算的线性有限元法[J]. 工程力学, 2018, 35(2): 13-20.
[11] 初明进, 张庆池, 刘继良, 邱臻, 王琳, 谢天宇. 配置不同水平钢筋的自适应分缝剪力墙受剪性能试验研究[J]. 工程力学, 2018, 35(2): 214-220.
[12] 潘兆东, 谭平, 周福霖. 基于保性能自适应RBF神经网络的MR半主动非线性鲁棒分散控制[J]. 工程力学, 2018, 35(10): 47-55.
[13] 李雁军, 吕大刚, 王震宇. 基于自适应POA和IDA的RC框架填充墙结构超强系数分析[J]. 工程力学, 2017, 34(增刊): 197-201.
[14] 陈晓东, 聂国隽. 变角度纤维层合板的弯曲问题研究[J]. 工程力学, 2017, 34(9): 248-256.
[15] 杨成, 唐泽楠, 常志旺, 黄国庆, 徐腾飞. 基于经验模态分解的速度脉冲型地震动量化识别[J]. 工程力学, 2017, 34(4): 206-212.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日