工程力学 ›› 2019, Vol. 36 ›› Issue (7): 57-66.doi: 10.6052/j.issn.1000-4750.2018.06.0343

• 土木工程学科 • 上一篇    下一篇

钛-钢复合钢材力学性能及本构模型研究

班慧勇1, 白日升2, 刘明3, 李文斌3, 白音2   

  1. 1. 土木工程安全与耐久教育部重点实验室, 清华大学土木工程系, 北京 100084;
    2. 北京航空航天大学交通科学与工程学院, 北京 100191;
    3. 鞍钢股份有限公司, 辽宁, 鞍山 114009
  • 收稿日期:2018-06-16 修回日期:2018-09-30 出版日期:2019-07-06 发布日期:2019-07-06
  • 通讯作者: 班慧勇(1985-),男,内蒙古呼和浩特人,特别研究员,博士,主要从事高性能钢材与钢结构研究(E-mail:banhy@tsinghua.edu.cn). E-mail:banhy@tsinghua.edu.cn
  • 作者简介:白日升(1993-),男,山西临汾人,硕士,主要从事复合钢材的研究(E-mail:bairsh@buaa.edu.cn);刘明(1980-),男,辽宁鞍山人,高工,硕士,主要从事高性能钢材研究(E-mail:aglm6@163.com);李文斌(1978-),男,四川巴中人,高工,学士,主要从事钢铁产品于新工艺开发工作(E-mail:aglwb@163.com);白音(1980-),男,山西太谷人,讲师,博士,主要从事空间钢结构抗火受力性能研究(E-mail:baibowenbai@buaa.edu.cn)
  • 基金资助:
    国家自然科学基金项目(51608300)

Study on the material properties and constitutive model of titanium-clad steel

BAN Hui-yong1, BAI Ri-sheng2, LIU Ming3, LI Wen-bin3, BAI Yin2   

  1. 1. Key Laboratory of Civil Engineering Safety and Durability of China Education Ministry, Department of Civil Engineering, Tsinghua University, Beijing 100084, China;
    2. School of Transportation Science and Engineering, Beihang University, Beijing 100191, China;
    3. Product Development Department, Anshan Iron & Steel, Anshan, Liaoning, 114009, China
  • Received:2018-06-16 Revised:2018-09-30 Online:2019-07-06 Published:2019-07-06

摘要: 为系统研究钛-钢复合钢材的力学性能,对2 mm~12 mm厚TA2+Q235B钛-钢复合钢材进行了系列试验研究,包括拉伸、剪切、粘结、弯曲、冲击韧性、硬度等试验,其中拉伸试件设计考虑了复合比的影响。基于试验结果,得到了该类钛-钢复合钢材的基本力学性能指标,并重点对其单调拉伸荷载下的力学性能进行了分析研究。试验结果表明:钛-钢复合钢材的应力-应变曲线特征及典型力学性能指标与复合比的大小直接相关;随着复合比的增大,屈服平台逐渐消失,弹性模量逐渐减小,屈服强度和断后伸长率逐渐升高,但抗拉强度的变化并不明显,这与钛TA2和Q235B低碳钢本身的力学性能有关。基于拉伸试验数据和有限元数值计算结果,提出了钛-钢复合钢材的力学指标计算方法,建立了其本构模型。此外,剪切和粘结试验得到的复合界面强度尽管较低,但对拉伸力学性能影响十分有限;同时,该类复合钢材的受弯和冲击性能良好,硬度结果呈现两侧高、中间界面层低的情况。研究结果可为钛-钢复合钢材在结构工程领域的研究和应用提供基础参考和材料本构模型,并有利于促进其工程应用。

关键词: 钛-钢复合钢材, 试验研究, 复合比, 有限元, 本构模型

Abstract: To study the mechanical properties of titanium-clad (TC) steel systematically, a series of tests on TA2+Q235B (2 mm~12 mm thick) TC steel plates are carried out including tension coupon test with various clad ratios, shear test, combine test, bending test, impact test and hardness test. Based on the test results, basic mechanical properties of this kind of TC steel are obtained. In particular, the mechanical properties under monotonic tensile loading are focused on. It is indicated that the characteristics of the stress-strain curves and typical mechanical properties of the titanium-clad steel are directly related to the clad ratio. With an increase of the clad ratio, the yield plateau disappears gradually and the elastic modulus decreases, whilst the yield strength and the elongation increase although the change in tensile strength is insignificant. These phenomena are related to the mechanical properties of titanium (TA2) and low carbon steel (Q235B). Based on the tensile test data and finite element analysis results, a calculation method for determining the mechanical index of the TC steel is developed, and a constitutive model of the TC steel is proposed in this paper. In addition, despite the fact that the strengths obtained from the shear and combine tests were low, their effects on the tensile properties are rather limited. The bending performance and impact properties of the TC steel are good; the hardness of the base layer and cladding layer are higher than that at the bonding interface region. This work may provide basic reference and the material constitutive model for research of the TC steel in structural engineering, and may promote its engineering applications.

Key words: Titanium-clad steel, experimental investigation, clad ratio, finite element analysis, constitutive model

中图分类号: 

  • TU391
[1] 闫力. 钛钢复合板的特点及应用领域[J]. 中国钛业, 2011(3):12-14. Yan Li. Behaviotsard applications of Ti/Steel composite sheets[J]. Titanium industry in China, 2011(3):12-14. (in Chinese)
[2] Huiyong Ban, Yongjiu Shi, Xiaoyan Tao. Use of clad steel in engineering structures[C]//Proceedings of the Fifteenth East Asia-Pacific Conference on Structural Engineering & Construction, Xi'an, China, 2017:1167-1173.
[3] 孟宪斌, 易彩虹, 吴小玲, 等. 钛及钛合金复合材料发展及工业应用[J]. 中国化工装备, 2013, 15(6):3-7. Meng Xianbing, Yi Caihong, Wu Xiaoling, et al. The development and industrial application of titanium & titanium alloy clad material[J]. China Chemical Industry Equipment, 2013, 15(6):3-7. (in Chinese)
[4] GB/T 8547-2006, 钛-钢复合板[S]. 北京:中国标准出版社, 2006. GB/T 8547-2006, Titanium clad steel plate[S]. Beijing:Standards Press of China, 2006. (in Chinese)
[5] Jifeng Sun, Xiaojun Liang, Sihai Jiao. Study on the interface of direct hot rolling titanium-clad steel plates[J]. Baosteel Technical Research, 2017, 11(1):32-39.
[6] 王宽, 朱海平, 宋振莉, 等. 钛钢复合板界面特征研究述评[J]. 功能材料, 2017, 48(4):25-32. Wang Kuan, Zhu Haiping, Song Zhenli, et al. Review on characteristics of interface of titanium clad steel plate[J]. Functional Materials, 2017, 48(4):25-32. (in Chinese)
[7] 段文森, 鲁汉民, 刘建新. 金属爆炸复合界面的疲劳裂纹扩展特性及断裂机制的研究[J]. 稀有金属材料与工程, 1989, 3(8):6-10. Duan Wensen, Lu Hanmin, Liu Jianxin. Study on fatigue crack propagation and fracture mechanisms of explosive clad metal interface[J]. Rare Metal Materials and Engineering, 1989, 3(8):6-10. (in Chinese)
[8] 杨扬. 钛/钢爆炸复合界面的微观组织结构和力学行为[J]. 材料导报, 1994, 8(5):26. Yang Yang. The microstructures in the explosive cladding titanium/mild steel interface after heat treatment[J]. Materials Review, 1994, 8(5):26. (in Chinese)
[9] Motarjemi A K, Kocak M, Ventzke V. Mechanical and fracture characterization of a bi-material steel plate[J]. International Journal of Pressure Vessels and Piping, 2002, 19(3):181-191.
[10] Zhichao Zhu, Yi He, Xinjin Zhang, et al. Effect of interface oxides on shear properties of hot-holled steel clad plate[J]. Materials Science & Engineering A, 2016, 669:344-349.
[11] 施刚, 朱希. 高强度结构钢材单调荷载作用下的本构模型研究[J]. 工程力学, 2017, 34(2):50-59. Shi Gang, Zhu Xi. Study on constitutive model of high-strength structural steel under monotonic loading[J]. Engineering Mechanics, 2017, 34(2):50-59. (in Chinese)
[12] 杨璐, 卫璇, 张有振, 等. 不锈钢母材及其焊缝金属材料单拉本构关系研究[J]. 工程力学, 2018, 35(5):125-130. Yang Lu, Wei Xuan, Zhang Youzhen, et al. Research on the tensile stress-strain relation of stainless steel base material and its weld metal material[J]. Engineering Mechanics, 2018, 35(5):125-130. (in Chinese)
[13] GB/T 3620.1-2007, 钛及钛合金牌号和化学成分[S]. 北京:中国标准出版社, 2007. GB/T 3620.1-2007, Designation and composition of titanium and titanium and alloys[S]. Beijing:Standards Press of China, 2007. (in Chinese)
[14] GB/T 700-2006, 碳素结构钢[S]. 北京:中国标准出版社, 2006. GB/T 700-2006, Carbon structural steels[S]. Beijing:Standards Press of China, 2006. (in Chinese)
[15] GB/T 228.1-2010, 金属材料拉伸试验第1部分:室温试验方法[S]. 北京:中国标准出版社, 2010. GB/T 228.1-2010, Metallic materials-tensile testingpart 1:Method of test at room temperature[S]. Beijing:Standards Press of China, 2010. (in Chinese)
[16] GB/T 6396-2008, 复合钢板力学及工艺性能试验方法[S]. 北京:中国标准出版社, 2008. GB/T 6396-2008, Clad steel plates-Mechanical and technological test[S]. Beijing:Standards Press of China, 2008. (in Chinese)
[17] GB/T 228.1-2010, 金属材料弯曲试验方法[S]. 北京:中国标准出版社, 2010. GB/T 228.1-2010, Metallic materials-Bend test[S]. Beijing:Standards Press of China, 2010. (in Chinese)
[18] GB/T 229-2007, 金属材料瞎比摆锤冲击试验方法[S]. 北京:中国标准出版社, 2007. GB/T 229-2007, Metallic materials-Charpy pendulum impact method[S]. Beijing:Standards Press of China, 2007. (in Chinese)
[19] Ramberg W, Osgood W R. Description of stress-strain curves by three parameters[J]. National Advisory Committee for Aeronautics, 1943, TN902.
[20] Rasmussen K J R. Full-rage stress-strain curves for stainless steel alloys[J]. Journal of Constructional Steel Research, 2003, 59(1):47-61.
[21] 钟善桐. 钢管混凝土统一理论[J]. 哈尔滨建筑工程学院学报, 1994, 27(6):21-28. Zhong Shantong. The unified theory of concrete filled steel tube (CFST)[J]. Journal of Harbin University of Civil Engineering, 1994, 27(6):21-28. (in Chinese)
[22] 班慧勇, 施刚, 石永久. 高强钢焊接箱型轴压构件整体稳定设计方法研究[J]. 建筑结构学报, 2014, 35(5):57-64. Ban Huiyong, Shi Gang, Shi Yongjiu. Research on design method for overall buckling behaviour of welded box columns fabricated from high-strength steel[J]. Journal of Building Structures, 2014, 35(5):57-64. (in Chinese)
[23] GB/T 1591-2008, 低合金高强度结构钢[S]. 北京:中国标准出版社, 2008. GB/T 1591-2008, High strength low alloy structural steels[S]. Beijing:Standards Press of China, 2008. (in Chinese)
[1] 李达, 牟在根. 内嵌VV-SPSW平面钢框架结构抗震性能研究[J]. 工程力学, 2019, 36(S1): 210-216.
[2] 邱天琦, 杨军, 吴志轩, 沈兆普, 梁宇钒. 复理石顺层边坡最危险岩层倾角及简化的单一层面模型[J]. 工程力学, 2019, 36(S1): 217-221,228.
[3] 杨志坚, 韩嘉明, 雷岳强, 赵海龙, 胡嘉飞. 预应力混凝土管桩与承台连接节点抗震性能研究[J]. 工程力学, 2019, 36(S1): 248-254.
[4] 王元清, 乔学良, 贾连光, 张天雄, 蒋庆林. 单调加载下不锈钢结构梁柱栓焊混用节点承载性能分析[J]. 工程力学, 2019, 36(S1): 59-65.
[5] 林德慧, 陈以一. 部分填充钢-混凝土组合柱整体稳定分析[J]. 工程力学, 2019, 36(S1): 71-77,85.
[6] 杨雅斌, 石广玉. 正交异性钢桥面板肋-面板焊缝疲劳验算的应力分析模型评估[J]. 工程力学, 2019, 36(S1): 98-105.
[7] 谢启芳, 张利朋, 王龙, 崔雅珍, 杨柳洁. 拔榫状态下直榫节点滞回性能有限元分析[J]. 工程力学, 2019, 36(S1): 138-143.
[8] 杨浩, 罗帅, 邢国然, 王伟. 杆梁组合结构的有限元分析[J]. 工程力学, 2019, 36(S1): 154-157,169.
[9] 陈恒, 肖映雄, 郭瑞奇. 基于p型自适应有限元法的混凝土骨料模型数值模拟[J]. 工程力学, 2019, 36(S1): 158-164.
[10] 程麦理. 黄土场地桩基横向力学行为数值模拟[J]. 工程力学, 2019, 36(S1): 229-233.
[11] 赵兴乾, 帅长庚, 徐伟, 李正民. 船舶艉部整体隔振系统中轴承载荷增量研究[J]. 工程力学, 2019, 36(S1): 311-315.
[12] 刘岩钊, 尹首浮, 于桂兰. 周期格栅式表面波屏障的设计与性能研究[J]. 工程力学, 2019, 36(S1): 324-328.
[13] 董义义, 邢沁妍, 方楠, 袁驷. 自适应有限元线法在二维无穷域问题中的应用[J]. 工程力学, 2019, 36(7): 8-17.
[14] 邹慧辉, 陈万祥, 郭志昆, 周子欣. 火灾后钢管RPC柱近距离爆炸残余承载力研究[J]. 工程力学, 2019, 36(7): 184-196.
[15] 王威, 刘格炜, 苏三庆, 张龙旭, 任英子, 王鑫. 波形钢板剪力墙及组合墙抗剪承载力研究[J]. 工程力学, 2019, 36(7): 197-206,226.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日