工程力学 ›› 2019, Vol. 36 ›› Issue (8): 79-86,105.doi: 10.6052/j.issn.1000-4750.2018.06.0337

• 土木工程学科 • 上一篇    下一篇

钢结构火灾反应相似模型及试验研究与分析

陈适才1, 王尚则1, 王亚辉2, 张洋1, 闫维明1   

  1. 1. 北京工业大学城市与工程安全减灾教育部重点实验室, 北京 100124;
    2. 建研科技股份有限责任公司, 北京 100013
  • 收稿日期:2018-06-16 修回日期:2018-12-12 出版日期:2019-08-25 发布日期:2019-08-10
  • 通讯作者: 陈适才(1979-),男,湖北人,教授,博士,主要从事结构抗火及结构非线性分析研究(E-mail:shicaichen@163.com). E-mail:shicaichen@163.com
  • 作者简介:王尚则(1996-),男,河北人,硕士生,主要从事工程结构抗火研究(E-mail:bjut2011bjut@163.com);王亚辉(1991-),男,北京人,助理工程师,学士,主要从事工程结构数值分析与研究(E-mail:civilbjut@126.com);张洋(1988-),男,河南人,硕士生,主要从事工程结构抗火分析与研究(E-mail:zhangyang123@163.com);闫维明(1960-),男,黑龙江人,教授,博士,博导,主要从事工程结构抗震及健康监测研究(E-mail:yanwm@bjut.edu.cn).
  • 基金资助:
    国家自然科学基金项目(51278516,51678016)

EXPERIMENTAL RESEARCH AND ANALYSIS ON SIMILARITY MODEL FOR STEEL STRUCTURES UNDER FIRE

CHEN Shi-cai1, WANG Shang-ze1, WANG Ya-hui2, ZHANG Yang1, YAN Wei-ming1   

  1. 1. Key Laboratory of Urban Security and Disaster Engineering, Ministry of Education, Beijing University of Technology, Beijing 100124, China;
    2. China Academy of Building Research Technology Co., Ltd. Beijing 100013, China
  • Received:2018-06-16 Revised:2018-12-12 Online:2019-08-25 Published:2019-08-10

摘要: 为采用缩尺模型研究火灾下整体钢结构的火灾反应,首先基于火场相似关系以及热传导分析理论推导了钢结构火灾反应相似关系模型,其次根据建立的火场与结构相似关系模型分别设计了1/4和1/8缩尺火场试验模型与钢框架结构试验模型,并对其进行了缩尺火灾试验研究,对比分析了空气温度、结构温度、结构变形与结构破坏规律。结果表明:烟气温度、结构温度、结构变形表明结构火灾反应相似模型具有较好的合理性和准确性,承载力与稳定性也满足相似模型;温度相似比为1以及相同的火场和结构时间相似比可以简化相似模型;缩尺模型试验需要严格控制火场维护结构的变形以及外界通风条件,才能保证结构在高温破坏阶段后的相似性。

关键词: 火场模型, 钢结构, 相似理论, 火灾试验, 热应力

Abstract: In order to analyze the fire response of a whole structure under fire using the method of scaled fire model, a similarity relation model for fire response of steel structures under fire was firstly developed in this paper based on the fire similarity and heat conduction theory. Then 1/4 and 1/8 scale fire test models and test specimens of steel frame structures were designed according to the relationships, and experimental studies were performed. Finally, comparative analysis of air temperatures, structure temperatures, structure deformation and structure failure was carried out. The results show that the similarity model is reasonable and accurate, and the bearing capacity and stability also meet the similarity model. The similarity model can be simplified by assuming the temperature similarity ratio of 1 or assuming the same similarity ratio of fire and structural time. The deformation of the maintenance structures and the external ventilation conditions should be strictly controlled in the scale fire tests, so as to ensure the similarity of the structure under high temperature during the post-failure stage.

Key words: fire model, steel structure, similarity theory, fire test, thermal stress

中图分类号: 

  • TU391
[1] 李国强, 蒋首超, 林桂祥. 钢结构抗火计算与设计[M]. 北京:中国建筑工业出版社, 1999:2-6. Li Guoqiang, Jiang Shouchao, Lin Guixiang. Fire resistance calculation and design of steel structure[M]. Beijing:China Building Industry Press, 1999:2-6. (in Chinese)
[2] Bailey C G, Lennon T, Moore D B. The behaviour of full-scale steel framed buildings subjected to compartment fires[J]. The Structural Engineer, 1999, 77(8):15-21.
[3] Joonho Choi. Concurrent fire dynamic models and thermos mechanical analysis of steel and concrete structures[D]. Atlanta:Georgia Institute of Technology, 2008.
[4] Bailey C G. Development of computer software to simulate the structural behaviour of steel framed buildings in fire[J]. Computers and Structures, 1998, 67(6):421-438.
[5] Gann R G, William L G. Final report of the national construction safety team on the collapse of the world trade center twin towers[R]. Gaithersburg:National Institute of Standards and Technology, 2005:1-65.
[6] 史健勇, 任爱珠. 奥运场馆火灾分析中软件集成方法的研究[J]. 计算机工程, 2006, 32(6):257-262. Shi Jianyong, Ren Aizhu. Research on technology of software integration for fire analysis of Olympic gymnasiums[J]. Computer Engineering, 2006, 32(6):257-262. (in Chinese)
[7] Ren A Z, Shi J Y, Shi W Z. Integration of fire simulation and structural analysis for safety evaluation of gymnasiums[J]. Automation in Construction, 2007, 16(3):277-289.
[8] 王景玄, 王文达, 周小燕. 基于多尺度建模的钢管混凝土组合框架耐火性能数值模拟[J]. 工程力学, 2012, 29(增刊):170-175. Wang Jingxuan, Wang Wenda, Zhou Xiaoyan. Numerical simulation on fire resistance of composite frame with CFST columns based on multi-scale method. Engineering mechanics, 2012, 29(Suppl):170-175. (in Chinese)
[9] Wald F, Silva L S, Moore D B. Experimental behaviour of a steel structure under natural fire[J]. Fire Safety Journal, 2006, 41(7):509-522.
[10] 李兵, 董毓利. 足尺钢框架中连续板格火灾实验研究[J]. 工程力学, 2015, 32(1):145-153. Li Bing, Dong Yuli. A fire test of continuous panels in a full-scale steel-framed structure[J]. Engineering Mechanics, 2015, 32(1):145-153. (in Chinese)
[11] 叶继红, 陈伟, 汪正流, 等. 冷弯薄壁C型钢托梁_加气混凝土板组合楼盖足尺耐火试验研究[J]. 建筑结构学报, 2015, 36(8):108-115. Ye Jihong, Chen Wei, Wang Zhengliu, et al. Full scale fire experiments on cold-formed steel C-shape joists-ALC composite floors[J]. Journal of Building Structures, 2015, 36(8):108-115. (in Chinese)
[12] Praveen K, Umesh K S, Virendra K, et al. Full-scale fire test on an earthquake-damaged reinforced concrete frame[J]. Fire Safety Journal, 2015, 73(5):1-19.
[13] Wang Y C. An analysis of the global structural behaviour of the cardington steel-framed building during the two BRE fire tests[J]. Engineering Structures, 2000, 22(2):401-412.
[14] 张敏政. 地震模拟实验中相似律应用的若干问题[J]. 地震工程与工程振动, 1997, 17(2):52-58. Zhang Minzheng. Study on similitude laws for shaking table tests[J]. Earthquake Engineering and Engineering Vibration, 1997, 17(2):52-58. (in Chinese)
[15] 黄思凝, 郭迅, 张敏政. 钢筋混凝土结构小比例尺模型设计方法及相似性研究[J]. 土木工程学报, 2012, 45(7):31-38. Huang Sining, Guo Xun, Zhang Minzheng. Study of design method and similitude for small-scale reinforced concrete structural models[J]. China Civil Engineering Journal, 2012, 45(7):31-38. (in Chinese)
[16] James G. Quintiere. Scaling applications in fire research[J]. Fire Safety Journal, 1989:15:3-29.
[17] Perricone J A. Scale modeling of the transient behavior of wood crib fires in enclosures[D]. Maryland:University of Maryland, 2005.
[18] 张强, 蒋勇, 邱蓉, 等. 基于CFD模拟的不同尺度竖井模型内烟气温度分布相似性的研究[J]. 火灾科学, 2016, 25(1):20-27. Zhang Qiang, Jiang Yong, Qiu Rong, et al. Similarity study of temperature distribution in different scale shaft models with CFD simulations[J]. Fire Safety Science, 2016, 25(1):20-27. (in Chinese)
[19] 钟茂华. 火灾过程动力学特性分析[M]. 北京:科学出版社, 2007:54-58. Zhong Maohua. Analysis of dynamic characteristics of fire process[M]. Beijing:Science Press, 2007:54-58. (in Chinese)
[20] Wang Ming. Scale modeling of structural behavior in fire[D]. Maryland:University of Maryland, 2006.
[21] Bailey C G, Toh W S. Small-scale concrete slab tests at ambient and elevated temperatures[J]. Engineering Structures, 2007, 29(10):2775-2791.
[22] Dronnadula V R, Khaled S, Liu L, et al. Size effect on fire resistance of structural concrete[J]. Engineering Structures, 2015, 99(4):468-478.
[23] 王进军, 涂然, 曾怡, 等. 火灾标准燃烧室相似模型试验箱设计及有效性研究[J]. 安全与环境学报, 2011, 11(6):181-184. Wang Jinjun, Tu Ran, Zeng Yi, et al. Design and validity analysis of the scaling model and the fire detection standard combustion room[J]. Journal of Safety and Environment, 2011, 11(6):181-184. (in Chinese)
[24] 于秋红. 热工基础[M]. 北京:北京大学出版社, 2009:173-262. Yu Qiuhong. Thermal engineering[M]. Beijing:Peking University Press, 2009:173-262. (in Chinese)
[25] Bianchi A, Fautrelle Y, Etay J. 传热学[M]. 王晓东译. 大连理工大学出版社, 2008:70-94. Bianchi A, Fautrelle Y, Etay J. Heat transfer theory[M]. translated by Wang Xiaodong. Dalian University of Technology Press, 2008:70-94. (in Chinese)
[26] 李维特, 黄保海, 毕仲波. 热应力理论分析及应用[M]. 北京:中国电力出版社, 2004:59-109. Li Weite, Huang Baohai, Bi Zhongbo. Theoretical analysis and application of thermal stress[M]. Beijign:China Electric Power Press, 2004:59-109. (in Chinese)
[27] 苏琳, 王丽晶. 自由燃烧下油池火灾的燃烧特性研究[J]. 消防理论研究, 2011, 30(8):668-670. Su Lin, Wang Lijing. Research on the combustion performance of free-burning pool fire[J]. Fire Theory Research, 2011, 30(8):668-670. (in Chinese)
[1] 李达, 牟在根. 内嵌VV-SPSW平面钢框架结构抗震性能研究[J]. 工程力学, 2019, 36(S1): 210-216.
[2] 钱海峰, 赵婧同, 王元清, 王登峰. 考虑除尘器箱体墙板-立柱协同受力时立柱在横向荷载作用下的内力计算[J]. 工程力学, 2019, 36(7): 227-237,247.
[3] 张建春, 张大山, 董毓利, 王卫华. 火灾下钢-混凝土组合梁内力变化的试验研究[J]. 工程力学, 2019, 36(6): 183-192,210.
[4] 王俊杰, 王伟. 考虑罗德角参数的钢材薄板延性断裂标定方法[J]. 工程力学, 2019, 36(5): 37-43.
[5] 王峰, 郑保敬, 林皋, 周宜红, 范勇. 热弹性动力学耦合问题的插值型移动最小二乘无网格法研究[J]. 工程力学, 2019, 36(4): 37-43,51.
[6] 杜咏, 孙亚凯, 李国强. 预应力钢绞线高温力学性能试验研究[J]. 工程力学, 2019, 36(4): 231-238.
[7] 张立红, 胡晓, 曾迪, 周德才, 毛宇, 吕玮. 基于抗震性能的高烈度区高端阀厅选型研究[J]. 工程力学, 2018, 35(S1): 320-324.
[8] 张爱林, 张勋, 刘学春, 王琦. 钢框架-装配式两边连接薄钢板剪力墙抗震性能试验研究[J]. 工程力学, 2018, 35(9): 54-63,72.
[9] 施刚, 王珣, 高阳, 张勇. 国产低屈服点钢材循环加载试验研究[J]. 工程力学, 2018, 35(8): 30-38.
[10] 胡君逸, 李跃明, 李海波, 程昊. 考虑热应力、热变形正交各向异性板的动特性及响应规律[J]. 工程力学, 2018, 35(8): 218-229.
[11] 尹飞, 周晖, 王元清, 廖小伟, 杨璐. A572 Gr.50厚板对接焊缝断裂性能研究[J]. 工程力学, 2018, 35(6): 42-51.
[12] 王元清, 顾浩洋, 廖小伟. 钢结构角焊缝抗剪疲劳性能的试验研究[J]. 工程力学, 2018, 35(4): 61-68.
[13] 王勇, 段亚昆, 张亚军, 袁广林, 王腾焱, 吕俊利. 单向面内约束混凝土双向板抗火性能试验研究及数值分析[J]. 工程力学, 2018, 35(3): 65-78.
[14] 雷素素, 刘宇飞, 段先军, 郭小华, 李学飞, 李建华, 侯进峰, 李海兵, 杨建平, 幸坤涛, 崔政涛, 关键, 毕登山, 聂鑫. 复杂大跨空间钢结构施工过程综合监测技术研究[J]. 工程力学, 2018, 35(12): 203-211.
[15] 徐善华, 张宗星, 李柔, 位龙虎. 锈蚀钢框架地震易损性评定方法[J]. 工程力学, 2018, 35(12): 107-115.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日