工程力学 ›› 2020, Vol. 37 ›› Issue (3): 46-55.doi: 10.6052/j.issn.1000-4750.2018.06.0323

• 土木工程学科 • 上一篇    下一篇

高延性混凝土面层加固受弯无筋砌体墙抗震性能试验研究

邓明科1, 董志芳1, 樊鑫淼1,2, 梁兴文1   

  1. 1. 西安建筑科技大学土木工程学院, 陕西, 西安 710055;
    2. 中机国际工程设计研究院有限责任公司, 湖南, 长沙 410007
  • 收稿日期:2018-06-05 修回日期:2018-08-07 出版日期:2020-03-25 发布日期:2018-11-29
  • 通讯作者: 邓明科(1979-),男,南充人,教授,博士,从事新材料与新型结构研究(E-mail:dengmingke@126.com). E-mail:dengmingke@126.com
  • 作者简介:董志芳(1991-),男,商丘人,博士生,从事建筑结构及抗震加固研究(E-mail:dongzhifang2017@163.com);樊鑫淼(1987-),男,郴州人,硕士生,从事建筑结构及抗震加固研究(E-mail:Fanxinmiao20078768@163.com);梁兴文(1952-),男,渭南人,教授,硕士,博导,从事建筑结构及抗震研究(E-mail:liangxingwen2000@yahoo.com.cn).
  • 基金资助:
    国家自然科学基金项目(51578445)

EXPERIMENTAL INVESTIGATION ON THE SEISMIC BEHAVIOR OF FLEXURAL UNREINFORCED MASONRY WALLS STRENGTHENED BY HIGH DUCTILITY CONCRETE OVERLAYS

DENG Ming-ke1, DONG Zhi-fang1, FAN Xin-miao1,2, LIANG Xing-wen1   

  1. 1. School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China;
    2. China Machinery International Engineering Design&Research Institute Co., Ltd., Changsha, Hunan 410007, China
  • Received:2018-06-05 Revised:2018-08-07 Online:2020-03-25 Published:2018-11-29

摘要: 为研究高延性混凝土(HDC)加固无筋受弯砌体墙的抗震性能,设计了1片未加固砖墙、1片钢筋网水泥砂浆面层加固砖墙和3片HDC面层加固砖墙进行拟静力试验,研究其破坏机理、滞回特性和耗能能力。结果表明:1)HDC面层和砖墙具有良好的粘结性能,可有效抑制墙体的开裂和破坏,能改善墙体的脆性破坏特征;2)HDC面层对砖墙形成良好的约束作用,提高了墙体的抗震承载力;3)HDC面层可显著提高砖墙的变形和耐损伤能力,减小或免去震后修复费用,其加固效果优于传统的钢筋网水泥砂浆面层。根据统计分析,该文给出了HDC面层加固墙体基于位移角的易损性曲线。

关键词: 无筋砌体, 受弯砌体, 高延性混凝土(HDC), 抗震加固, 性能指标

Abstract: To study the seismic behavior of flexural unreinforced masonry walls strengthened with High Ductility Concrete (HDC) overlays, an unreinforced brick wall, a wall retrofitted with steel-meshed cement mortar and three walls strengthened with HDC overlays were designed. Quasi-static tests were performed to study the failure mechanism, hysteretic characteristics and energy dissipation capacity of the brick walls. The results shows that:the bonding properties between the HDC overlays and brick walls are excellent, and the HDC overlay is effective to limit the crack and damage and avoid brittle failure; the HDC overlay has good restraining effect on the brick walls and improves the seismic performance of the brick walls; the HDC overlay can significantly improve the damage tolerance and deformability and reduce or avoid the repair expenses after earthquakes. Its effectiveness is better than a traditional steel-meshed. According to the statistical analysis, this paper gives the fragility curve based on the drift of walls strengthened by HDC layers.

Key words: unreinforced masonry, flexural masonry, high ductility concrete (HDC), seismic reinforcement, performance analysis

中图分类号: 

  • TU362
[1] 张文芳. 砌体墙的面内受弯损坏形态及其抗震优势实例剖析[J]. 土木工程学报, 2010, 43(增刊1):130-135. Zhang Wenfang. Researches on in-plane flexural destruction modes and earthquake resistant advantages by way of representative examples[J]. China Civil Engineering Journal, 2010, 43(Suppl 1):130-135. (in Chinese)
[2] 张文芳, 马军卫, 常建兰. 恒压受弯无筋砌体承重墙的受弯能力历经过程特征研究[J]. 工程力学, 2012, 29(6):202-210. Zhang Wenfang, Ma Junwei, Chang Jianlan. Researches on bending capacity course of plain masonry bearing wall under bending and invariable axial force[J]. Engineering mechanics, 2012, 29(6):202-210. (in Chinese)
[3] Abrams D, Smith T, Lynch J, et al. Effectiveness of Rehabilitation on Seismic Behavior of Masonry Piers[J]. Journal of Structural Engineering, 2007, 133(1):32-43.
[4] GB 50702-2011, 砌体结构加固设计规范[S]. 北京:中国建筑工业出版社, 2011. GB 50702-2011, Code for design of strengthening masonry structures[S]. Beijing:China Architecture and Building Press, 2011. (in Chinese)
[5] 范晓东. 既有砌体结构加固承载力及抗震性能分析[D]. 重庆:重庆大学, 2012. Fan Xiaodong. Reinforcement bearing capacity and seismic performance analysis of existing masonry structure[D]. Chongqing:Chongqing University, 2012. (in Chinese)
[6] Li V C, Leung C K Y. Steady state and multiple cracking of short random fiber composites[J]. Journal of Engineering Mechanics, ASCE, 1992, 188(11):2246-2264.
[7] Li V C. On engineered cementitious composites (ECC) a review of the material and its applications[J]. Journal of Advanced Concrete Technology, 2003, 1(3):215-230.
[8] Li V C, Wang S, Wu C. Tensile strain-hardening behavior of PVA-ECC[J]. ACI Materials Journal, 2001, 98(6):483-492.
[9] 徐世烺, 李贺东. 超高韧性水泥基复合材料研究进展及其工程应用[J]. 土木工程学报, 2008, 41(6):45-60. Xu Shilang, Li Hedong. A review on the development of research and application of ultra high toughness cementitious composites[J]. China Civil Engineering Journal, 2008, 41(6):45-60. (in Chinese)
[10] Dehghani A, Fischer G, Alahi F N. Strengthening masonry infill panels using engineered cementitious composites[J]. Materials & Structures, 2015, 48(1/2):185-204.
[11] Singh S B, Patil R, Munjal P. Study of flexural response of engineered cementitious composite faced masonry structures[J]. Engineering Structures, 2017, 150:786-802.
[12] 张远淼, 余江滔, 陆洲导, 等. ECC修复震损剪力墙抗震性能试验研究[J]. 工程力学, 2015, 32(1):72-80. Zhang Yuanmiao, Yu Jiangtao, Lu Zhoudao, et al. Experimental test on aseisimic behavior of damaged reinforced concrete shear wall repaired with ECC[J]. Engineering Mechanics, 2015, 32(1):72-80. (in Chinese)
[13] 邓明科, 高晓军, 梁兴文. ECC面层加固砖墙抗震性能试验研究[J]. 工程力学, 2013, 30(6):168-174. Deng Mingke, Gao Xiaojun, Liang Xingwen. Experimental investigation on aseismic behavior of brick wall strengthened with ECC splint[J]. Engineering Mechanics, 2013, 30(6):168-174. (in Chinese)
[14] 邓明科, 杨铄, 梁兴文. 高延性混凝土单面加固构造柱约束砖砌体墙抗震性能试验研究[J]. 土木工程学报, 2018, 51(4):10-19. Deng Mingke, Yang Shuo, Liang Xingwen. Experimental studies on seismic behavior of confined masonry walls strengthened with single HDC layer[J]. China Civil Engineering Journal, 2018, 51(4):10-19. (in Chinese)
[15] 张伟. 高延性混凝土加固混凝土空心砌块砌体墙抗震性能试验研究[D]. 西安:西安建筑科技大学, 2018. Zhang Wei. Experimental Performance on seismic behavior of small-sized hollow concrete block masonry strengthened with High Ductility Concrete[D]. Xi'an:Xi'an University of Architecture and Technology, 2018. (in Chinese)
[16] 梁兴文, 郑雨, 邓明科, 等. 塑性铰区采用纤维增强混凝土剪力墙的变形性能研究[J]. 工程力学, 2013, 30(3):256-262. Liang Xingwen, Zheng Yu, Deng Mingke, et al. An investigation of deformation behavior of the shear wall with fiber-reinforced concrete in plastichigh region[J]. Engineering Mechanics, 2013, 30(3):256-262. (in Chinese)
[17] 梁兴文, 康力, 车佳玲, 等. 局部采用纤维增强混凝土柱的抗震性能试验与分析[J]. 工程力学, 2013, 30(9):243-250. Liang Xingwen, Kang Li, Che Jialing, et al. Experiments and analyses of seismic behavior of columns with fiber-reinforced concrete in bottom region[J]. Engineering Mechanics, 2013, 30(9):243-250. (in Chinese)
[18] 邓明科, 张阳玺, 胡红波. 高延性混凝土加固钢筋混凝土柱抗剪承载力计算[J]. 工程力学, 2018, 35(3):159-166. Deng Mingke, Zhang Yangxi, Hu Hongbo. Experimental study and calculation of the shear capacity of RC columns strengthened with high ductile concrete[J]. Engineering Mechanics, 2018, 35(3):159-166. (in Chinese)
[19] 梁兴文, 车佳玲, 邓明科. 对角斜筋小跨高比纤维增强混凝土连梁抗震性能试验研究[J]. 建筑结构学报, 2013, 34(8):135-141. Liang Xingwen, Che Jialing, Deng Mingke. Experimental research on seismic behavior of diagonally reinforced FRC coupling beams with small span-to-depth ratio[J]. Journal of Building Structures, 2013, 34(8):135-141. (in Chinese)
[20] JGJ 101-96, 建筑抗震试验方法规程[S]. 北京:中国建筑工业出版社, 1997. JGJ 101-96, Specification of Testing Methods for Earthquake Resistant Building[S]. Beijing:China Architecture Industry Press, 1997. (in Chinese)
[21] GB 50011-2010, 建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50011-2010, Code for seismic design of buildings[S]. Beijing:China Architecture and Building Press, 2010. (in Chinese)
[22] 建设部建抗字第377号, 建筑地震破坏等级划分标准[S]. 北京:中华人民共和国建设部, 1990. The Ministry of construction, resistance word 377th. Standard for classification of seismicdamage of buildings[S]. Beijing:Ministry of Construction of the PRC, 1990. (in Chinese)
[23] Ruiz García J, Negrete M. Drift-based fragility assessment of confined masonry walls in seismic zones[J]. Engineering Structures, 2009, 31(1):170-181.
[1] 蒋亦庞, 苏亮, 黄鑫. 考虑参数不确定性的无筋砌体结构地震易损性分析[J]. 工程力学, 2020, 37(1): 159-167.
[2] 邓明科, 马福栋, 叶旺, 殷鹏飞. 局部采用高延性混凝土装配式框架梁-柱节点抗震性能试验研究[J]. 工程力学, 2019, 36(9): 68-78.
[3] 邓明科, 董志芳, 杨铄, 王露, 周铁钢. 高延性混凝土加固震损砌体结构振动台试验研究[J]. 工程力学, 2019, 36(7): 116-125.
[4] 杜咏, 孙亚凯, 李国强. 预应力钢绞线高温力学性能试验研究[J]. 工程力学, 2019, 36(4): 231-238.
[5] 颜欣桐, 徐龙河. 基于遗传算法的钢筋混凝土框架-剪力墙结构失效模式多目标优化[J]. 工程力学, 2018, 35(4): 69-77.
[6] 张家广, 吴斌, 赵俊贤. 防屈曲支撑加固钢筋混凝土框架的实用设计方法[J]. 工程力学, 2018, 35(3): 151-158.
[7] 邓明科, 杨铄, 王露. 高延性混凝土加固无筋砖墙抗震性能试验研究与承载力分析[J]. 工程力学, 2018, 35(10): 101-111,123.
[8] 吕大刚, 代旷宇, 于晓辉, 李宁. FRP加固非延性RC框架结构的地震易损性分析[J]. 工程力学, 2017, 34(增刊): 49-53,70.
[9] 吴守君, 潘鹏, 张鑫. 框架-摇摆墙结构受力特点分析及其在抗震加固中的应用[J]. 工程力学, 2016, 33(6): 54-60,67.
[10] 郭子雄, 黄群贤, 刘阳, 梅真. 横向预应力钢套箍加固RC柱研究综述[J]. 工程力学, 2016, 33(3): 1-9.
[11] 孙国华, 邵寅, 于安林, 赵宝成, 盛邵山. 耗能梁段与带楼板RC框架梁连接节点的滞回性能研究[J]. 工程力学, 2015, 32(7): 47-55.
[12] 邓明科, 樊鑫淼, 高晓军, 梁兴文. ECC面层加固受损砖砌体墙抗震性能试验研究[J]. 工程力学, 2015, 32(4): 120-129.
[13] 朱彦鹏, 杨校辉, 马孝瑞, 朱桥川. 柔性加固失稳重力式挡土墙的动静力稳定性分析[J]. 工程力学, 2015, 32(11): 1-8.
[14] 徐龙河,吴耀伟,李忠献,滕军. 基于性能的钢框架结构失效模式识别及优化[J]. 工程力学, 2015, 32(10): 44-51.
[15] 焦驰宇, 孙广龙, 陈永祁, 张恺, 张连普, 马良喆. 液体粘滞阻尼器在市政桥梁抗震加固中的应用[J]. 工程力学, 2014, 31(增刊): 177-181.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈有亮;邵伟;周有成. 水饱和混凝土单轴压缩弹塑性损伤本构模型[J]. 工程力学, 2011, 28(11): 59 -063, .
[2] 陈誉;刘飞飞. 正对称Pratt 桁架直腹杆受压大偏心N型圆钢管节点静力性能实验研究[J]. 工程力学, 2011, 28(11): 170 -177 .
[3] 袁振伟;王海娟;岳希明;褚福磊. 密封进口涡动系数对转子系统动力学性能的影响[J]. 工程力学, 2011, 28(11): 231 -236 .
[4] 郜新军;赵成刚;刘秦. 地震波斜入射下考虑局部地形影响和土结动力相互作用的多跨桥动力响应分析[J]. 工程力学, 2011, 28(11): 237 -243 .
[5] 吕伟荣;王猛;刘锡军. 灌芯混凝土砌块砌体破坏准则研究[J]. 工程力学, 2011, 28(11): 251 -256 .
[6] 顾致平;和兴锁;方同. 微分对接条件对次谐共振影响的研究[J]. 工程力学, 2006, 23(4): 62 -66 .
[7] 张嘎;张建民. 土与结构接触面弹塑性损伤模型用于单桩与地基相互作用分析[J]. 工程力学, 2006, 23(2): 72 -77 .
[8] 高阳;王敏中. 定常温度热弹性梁的精化理论[J]. 工程力学, 2006, 23(2): 34 -40 .
[9] 罗战友;夏建中;龚晓南. 不同拉压模量及软化特性材料的球形孔扩张问题的统一解[J]. 工程力学, 2006, 23(4): 22 -27 .
[10] 童育强;向天宇;赵人达. 基于退化理论的空间梁单元有限元分析[J]. 工程力学, 2006, 23(1): 33 -37 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日