工程力学 ›› 2019, Vol. 36 ›› Issue (7): 79-88.doi: 10.6052/j.issn.1000-4750.2018.06.0319

• 土木工程学科 • 上一篇    下一篇

内置角钢改进夹心节点抗震性能研究与抗剪承载力计算

侯立群1, 闫维明2, 陈适才2, 陆新征3   

  1. 1. 清华大学北京市钢与混凝土组合结构工程技术研究中心, 北京 100084;
    2. 北京工业大学, 工程抗震与结构诊治北京市重点实验室, 北京 100124;
    3. 清华大学土木工程安全与耐久教育部重点试验室, 北京 100084
  • 收稿日期:2018-06-05 修回日期:2018-08-13 出版日期:2019-07-06 发布日期:2019-07-06
  • 通讯作者: 侯立群(1983-),女,山东潍坊人,博士后,主要从事工程结构抗震研究(E-mail:hearthlq@163.com). E-mail:hearthlq@163.com
  • 作者简介:闫维明(1960-),男,黑龙江兰西人,教授,博士,博导,主要从事工程结构抗震及健康监测研究(E-mail:yanwm@bjut.edu.cn);陈适才(1979-),男,湖北黄石人,副教授,博士,主要从事新型抗震体系及结构非线性分析研究(E-mail:shicaichen@163.com);陆新征(1978-),男,安徽芜湖人,教授,博士,主要从事结构非线性仿真研究(E-mail:luxz@tsinghua.edu.cn).
  • 基金资助:
    国家自然科学基金项目(51778341)

Seismic performance of 3D sandwich joint with improvement measures and shear strength calculation

HOU Li-qun1, YAN Wei-ming2, CHEN Shi-cai2, LU Xin-zheng3   

  1. 1. Beijing Engineering Research Center of Steel and Concrete Composite Structures, Tsinghua University, Beijing 100084, China;
    2. Beijing Key Laboratory of Earthquake Engineering and Structural Retrofit, Beijing University of Technology, Beijing 100124, China;
    3. China Key Laboratory of Civil Engineering Safety and Durability of China Education Ministry, Department of Civil Engineering, Tsinghua University, Beijing 100084, China
  • Received:2018-06-05 Revised:2018-08-13 Online:2019-07-06 Published:2019-07-06

摘要: 梁柱采用不同强度混凝土的节点核心区通常采用同柱等强的高强度混凝土浇筑(传统节点),而采用同梁等强的低强度混凝土浇筑(夹心节点)可简化施工过程,但同时降低了节点的抗震性能。为研究内置角钢改进夹心节点的可行性,通过一个空间夹心节点和一个内置角钢空间夹心节点试件进行双向等幅低周往复试验研究,对比分析了破坏模式、延性、耗能、刚度、应变和抗剪承载力等方面的差异。结果表明:采取改进和不采取改进措施节点破坏模式均以梁端屈服后的节点破坏为主,但采取改进措施的试件延性和抗剪承载力明显提高,耗能能力、刚度退化和变形能力有一定改善,表明改进措施改善了节点的抗震性能。最后在此基础上,给出了与该文和其他文献试验结果吻合较好的采取或者不采取改进措施夹心节点抗剪承载力计算公式。

关键词: 夹心节点, 内置角钢, 低周往复试验, 抗震性能, 抗剪承载力

Abstract: The joint core area is always casted with higher strength concrete of column. The sandwich beam-column joints core area casted with weaker strength concrete of beam can simplify the construction process, but the seismic performance of the joint is impaired. To study the feasibility of the sandwich joint improved with built-in angle iron, one unimproved and one improved 3D sandwich joints were tested under bi-directional reversed cyclic loads with constant amplitude to investigate the seismic behavior, including the failure mode, ductility, energy dissipation, stiffness, strain and shear strength. The test results show that, two specimens exhibit joint failure after the beam longitudinal reinforcement yields in the joint under bi-directional loads. However, the enhancement measure increases ductility and shear strength, improves energy dissipation, stiffness declination and deformation capacity, which indicates that the seismic performance of sandwich joint is improved. Finally, the formula is presented for calculating shear strength of the sandwich joints, and the solutions agree well with the experimental results of unimproved and improved sandwich joints.

Key words: sandwich joints, built-in angle iron, cyclic loading experiment, seismic performance, shear strength

中图分类号: 

  • TU352.1+1
[1] Bianchini C A, Woods E R, Kesler E C. Effect of floor concrete strength on column strength[J]. Journal of the American Concrete Institute, 1960, 11(31):1149-1169.
[2] Hawkins M N, Bao A, Yamazaki J. Moment transfer from concrete slabs to columns[J]. ACI Structural Journal, 1989, 6(86):705-716.
[3] Kayani M K. Load transfer from high strength concrete columns through lower strength concrete slabs[D]. Urbana:University of Illinois at Urbana-Champaign, 1992.
[4] Ospina C E, Alexander S D. Transmission of interior concrete column loads through floors[J]. Journal of Structural Engineering, 1998, 6(124):602-610.
[5] McHarg P J, Cook W D, Mitchell D, et al. Improved transmission of high-strength concrete column loads through normal strength concrete slabs[J]. ACI Structural Journal, 2000, 97(1):157-165.
[6] Portella J. Transmission of high strength concrete corner column loads through normal strength concrete slabs[D]. Victoria, Australia:University of Melbourne, 2003.
[7] Lee J, Yoon Y, Cook W D, et al. Benefits of using puddled HSC with fibers in slabs to transmit HSC column loads[J]. Journal of Structural Engineering-ASCE, 2007, 133(12):1843-1847.
[8] Lee J H, Yang J M, Yoon Y S. Strategic slab-column joint details for improved transmission of HSC column loads[J]. Magazine of Concrete Research, 2008, 60(2):85-91.
[9] Guidotti R, Ruiz M F, Muttoni A. Crushing and flexural strength of slab-column joints[J]. Engineering Structures, 2011, 33(3):855-867.
[10] Shin H O, Yoon Y S, Cook W D, et al. Enhancing the performance of UHSC columns intersected by weaker slabs[J]. Engineering Structures, 2016, 127:359-373.
[11] Shin H O, Yoon Y S, Mitchell D. Axial load transfer in non-slender ultra-high-strength concrete columns through normal-strength concrete floor slabs[J]. Engineering Structures, 2017, 136:466-480.
[12] 余琼, 李思明. 核心区和柱混凝土强度不等时节点的性能研究[J]. 同济大学学报(自然科学版), 2004, 32(12):1583-1588. Yu Qiong, Li Siming. Research on frame's joint that concrete strength of core is inferior to that of column[J].Journal of Tongji University (Natural Science), 2004, 32(12):1583-1588. (in Chinese)
[13] 杨治洪. RC框架夹心节点抗震性能及设计方法研究[D]. 重庆:重庆大学, 2010. Yang zhihong. Seismic behavior and design method of RC sandwich beam-column joints[D]. Chongqing:Chongqing University, 2016. (in Chinese)
[14] 曹晖, 陈祥, 华建民. 偏心夹心梁柱节点低周反复加载受力性能试验研究[J]. 工程力学, 2012, 29(10):257-262. Cao Hui, Chen Xiang, Hua Jianmin. Experimental study on behavior of eccentric beam-column sandwich joints under cyclic loading[J]. Engineering Mechanics, 2012, 29(10):257-262. (in Chinese)
[15] 侯立群. RC梁板柱空间夹心节点抗震性能及设计方法研究[D]. 北京:北京工业大学, 2016. Hou Liqun. Research on seismic behavior and design method of 3D sandwich joints with slabs[D]. Beijing:Beijing University of Technology, 2016. (in Chinese)
[16] 闫维明, 侯立群, 陈适才, 等. 双向荷载作用下空间夹心节点受力性能试验研究[J]. 工程力学. 2016, 33(5):211-219. Yan Weiming, Hou Liqun, Chen Shicai, et al Experimental study on the mechanical behavior of 3D sandwich joints under bi-directional loading[J]. Engineering Mechanics, 2016, 33(5):211-219. (in Chinese)
[17] GB 50010-2010, 混凝土结构设计规范:[S]. 北京:中国建筑工业出版社, 2010. GB 50011-2010, Code for design of concrete structures[S]. Beijing:China Architecture & Building Press, 2010. (in Chinese)
[18] 布欣, 谷倩, 王新武. 剖分T型钢梁柱连接框架中柱空间节点抗震试验研究[J]. 工程力学, 2017, 34(8):105-116. Bu Xin, Gu Qian, Wang Xinwu. Experimental study on the seismic performance of three-dimensional beam to middle column connection with T-stub[J]. Engineering Mechanics, 2017, 34(8):105-116. (in Chinese)
[19] Shafaei J, Hosseini A, Marefat M S, et al. Experimental evaluation of seismically and non-seismically detailed external RC beam-column joints[J]. Journal of Earthquake Engineering, 2017, 21(5):776-807.
[20] Beydokht E Z, Shariatmadar H. Strengthening and rehabilitation of exterior RC beam-column joints using carbon-FRP jacketing[J]. Materials and Structures, 2016, 49(12):1-17.
[21] Paulay T, Park R, Priestley M J N. Reinforced concrete beam-column joint sunder seismic actions[J]. ACI Journal, 1978, 75(11):585-593.
[22] ACI Committee 318. Building code requirements for structural concrete and commentary (ACI 318-2008)[S]. Farmington Hills:ACI, 2008.
[23] Hwang S J, Lee H J. Analytical model for predicting shear strengths of interior reinforced concrete beam-column joints for seismic resistance[J]. ACI Structural Journal, 2000, 97(1):35-44.
[24] Tsonos A G. Cyclic load behavior of RC beam-column subassemblages of modern structures[J]. ACI Structural Journal, 2007, 104(4):468-478.
[25] Shiohara H. New Model for Shear Failure of RC Interior Beam-Column Connections[J]. Journal of Structural Engineering, 2001, 127(2):152-160.
[26] Kuang J S, Wong H F. Effects of beam-column depth ratio on joint seismic behavior[J]. Structures & Buildings, 2008, 161(2):91-101.
[27] Wang G L, Dai J G, Teng J G. Shear strength model for RC beam-column joints under seismic loading[J]. Engineering Structures, 2012, 40:350-360.
[28] Kupfer H B, Gerstle K H. Behaviour of concrete under biaxial stress[J]. ACI Journal, 1969, 66:853-866.
[29] Vollum R L, Newman J B. The design of external reinforced concrete beam-column joints[J]. The Structural Engineer, 1999, 77(23&24):21-27.
[30] 傅剑平, 白绍良, 王峥, 等. 考虑轴压比影响的钢筋混凝土框架内节点抗震性能试验研究[J]. 土木建筑与环境工程, 2000, 22(z1):64-70. Fu Jianping, Bai Shaoliang, Wang Zheng, et al. Effect of Axial Force Ratio on Seismic Behavior of Interior Joints of RC Frames[J]. Journal of Civil, Architectural and Environmental Engineering, 2000, 22(z1):64-70. (in Chinese)
[31] CSA A23. 3-14, CSA Committee A23. 3. Design of concrete structures[S]. Toronto, Ontario:Canadian Standard Association, 2014.
[32] 周小真, 石启印, 姜维山. 混凝土内含角钢柱在低周反复荷载作用下的抗震性能研究[J]. 哈尔滨建筑大学学报, 1993(增1):60-67. Zhou Xiaozhen, Shi Qiyin, Jiang Weishan. Research on seismic performance of concrete columns with built-in angle iron under cyclic loading in low cycle[J]. Journal of Harbin architecture university, 1993(Suppl 1):60-67. (in Chinese)
[1] 李达, 牟在根. 内嵌VV-SPSW平面钢框架结构抗震性能研究[J]. 工程力学, 2019, 36(S1): 210-216.
[2] 杨志坚, 韩嘉明, 雷岳强, 赵海龙, 胡嘉飞. 预应力混凝土管桩与承台连接节点抗震性能研究[J]. 工程力学, 2019, 36(S1): 248-254.
[3] 张浩, 连鸣, 苏明周, 程倩倩, 关彬林. 含可更换剪切型耗能梁段-高强钢组合框筒结构静力弹塑性数值分析[J]. 工程力学, 2019, 36(S1): 78-85.
[4] 袁辉辉, 吴庆雄, 陈宝春, 蔡慧雄. 平缀管式钢管混凝土格构柱拟动力试验研究[J]. 工程力学, 2019, 36(7): 67-78.
[5] 邓明科, 董志芳, 杨铄, 王露, 周铁钢. 高延性混凝土加固震损砌体结构振动台试验研究[J]. 工程力学, 2019, 36(7): 116-125.
[6] 王威, 刘格炜, 苏三庆, 张龙旭, 任英子, 王鑫. 波形钢板剪力墙及组合墙抗剪承载力研究[J]. 工程力学, 2019, 36(7): 197-206,226.
[7] 王宇航, 刘元九, 周绪红. 腹板屈曲约束钢连梁抗震性能研究[J]. 工程力学, 2019, 36(6): 49-59,69.
[8] 杨参天, 解琳琳, 李爱群, 陈越. 足尺空腔式RC框架柱抗震性能试验研究[J]. 工程力学, 2019, 36(6): 60-69.
[9] 牟犇, 王君昌, 崔瑶, 庞力艺, 松尾真太朗. 一种改进型方钢管柱与钢梁连接节点抗震性能研究[J]. 工程力学, 2019, 36(6): 164-174.
[10] 曾磊, 谢炜, 郑山锁, 陈熠光, 任雯婷. T形配钢型钢混凝土柱-钢梁框架抗震性能研究[J]. 工程力学, 2019, 36(5): 157-165.
[11] 种迅, 张蓝方, 万金亮, 王德才, 叶献国, 解琳琳, 邵徽斌. 两层带开洞预制剪力墙抗震性能试验研究与数值模拟分析[J]. 工程力学, 2019, 36(5): 176-183.
[12] 李腾飞, 苏明周, 隋龑, 马磊, 韩丹. 高强钢组合K形偏心支撑钢框架抗震性能混合试验[J]. 工程力学, 2019, 36(4): 100-108,124.
[13] 杨勇, 陈阳, 张锦涛, 林冰, 于云龙. 部分预制装配型钢混凝土构件斜截面抗剪承载能力试验研究[J]. 工程力学, 2019, 36(4): 109-116.
[14] 董金芝, 张富文, 李向民. 框架-预应力摇摆墙结构抗震性能试验研究[J]. 工程力学, 2019, 36(4): 167-176.
[15] 徐龙河, 武虎. 设置自复位耗能支撑的斜拉桥横向抗震性能研究[J]. 工程力学, 2019, 36(4): 177-187.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日